Team:Bologna/Project

From 2009.igem.org

Revision as of 13:34, 28 September 2009 by Marco.cavina (Talk | contribs)

ProvaBol2.png
HOME TEAM PROJECT MODELING WETLAB LAB-NOTEBOOK DRY LAB SUBMITTED PARTS HUMAN PRACTICE


Introduction

Our goal is to create a logic gate based on a post-transcriptional regulation system in Escherichia coli, using RNA to silence gene expression. We inserted a cis-repressing sequence directly upstream of the rbs (ribosome binding site) to realize a "regulated rbs". We also designed the complementary trans-repressing sequence whose function is to recognize and cover the "regulated rbs" and prevent translation from it. Two versions of the trans- repressing sequence were designed with 2 different kinds of rbs covers. We want to use this short non-coding RNA segment placed in trans, to silence translation from dowstream the cis-repressing sequence. We developed a bioinformatic tool to research the best sequences. Using the results of our software we changed some base pairs in order to minimize the free energy of the RNA secondary structures.
These are the result sequences:

Cis-repressing sequence, inserted upstream of the target gene
Scar Cis-repressing Rbs Scar
TACTAGAG AACACAAACTATCACTTTAACAACACATTACATATACATTAAAATATTAC AAAGAGGAGAAA TACTAGAG


Trans-repressor sequence with a cover of 7 bases (long version)
Scar Cover Trans(long) Scar
TACTAGAG CCTCTTT GTAATATTTTAATGTATATGTAATGTGTTGTTAAAGTGATAGTTTGTGTT TACTAGAG


Trans-repressor sequence with a cover of 4 bases (short version)
Scar Cover Trans(short) Scar
TACTAGAG CTTT GTAATATTTTAATGTATATGTAATGTGTTGTTAAAGTGATAGTTTGTGTT TACTAGAG



When the TRANS-repressor element is present, it binds to the CIS-repressing, forming a RNA duplex and producing an obstruction that prevents the ribosome binding to the RBS:

Figure 1: Absence of TRANS - repressor
Figure 2: Presence of TRANS - repressor



These are the three genetic circuits that we have studied:

Circuito with rRBS 1.jpg


Circuito with rRBS 1.1.jpg


Circuit2.jpg



We decided to realize and developed the third circuit and we started to characterize its parts.
(More information in the Wetlab section)