Team:Brown/Project Implications

From 2009.igem.org

(Difference between revisions)
Line 6: Line 6:
-
 
+
==Human Practices==
This project raises safety issues due to the use of Staphylococcus epidermidis for producing and secreting the histamine binding protein, EV131. Although S. epidermidis is one of the more benign species of Staphylococcus, it can form infectious biofilms that are impervious to antibiotic treatment if its cell density becomes too great. This could pose a grave risk to researchers involved and the public for whom Allergene aims to serve.
This project raises safety issues due to the use of Staphylococcus epidermidis for producing and secreting the histamine binding protein, EV131. Although S. epidermidis is one of the more benign species of Staphylococcus, it can form infectious biofilms that are impervious to antibiotic treatment if its cell density becomes too great. This could pose a grave risk to researchers involved and the public for whom Allergene aims to serve.
This change in S. epidermidis phenotype is accomplished by the S. epidermidis agr operon, which upregulates pathogenicity genes in response to a quorum. We reasoned that we could incorporate a safety mechanism into our bacteria by putting a death gene under the regulation of the agr promoter. This way, whenever the bacteria would reach a high enough density to become dangerous, they would simply begin to die until they reach a safer, lower density. In order to first test that our cassette works, we ligated the agr promoter upstream of GFP, so that whenever the cells reached a quorum, they would fluoresce green. Later, the GFP would be switched out for a CCDB, a death gene.
This change in S. epidermidis phenotype is accomplished by the S. epidermidis agr operon, which upregulates pathogenicity genes in response to a quorum. We reasoned that we could incorporate a safety mechanism into our bacteria by putting a death gene under the regulation of the agr promoter. This way, whenever the bacteria would reach a high enough density to become dangerous, they would simply begin to die until they reach a safer, lower density. In order to first test that our cassette works, we ligated the agr promoter upstream of GFP, so that whenever the cells reached a quorum, they would fluoresce green. Later, the GFP would be switched out for a CCDB, a death gene.

Revision as of 02:58, 21 October 2009




Human Practices

This project raises safety issues due to the use of Staphylococcus epidermidis for producing and secreting the histamine binding protein, EV131. Although S. epidermidis is one of the more benign species of Staphylococcus, it can form infectious biofilms that are impervious to antibiotic treatment if its cell density becomes too great. This could pose a grave risk to researchers involved and the public for whom Allergene aims to serve. This change in S. epidermidis phenotype is accomplished by the S. epidermidis agr operon, which upregulates pathogenicity genes in response to a quorum. We reasoned that we could incorporate a safety mechanism into our bacteria by putting a death gene under the regulation of the agr promoter. This way, whenever the bacteria would reach a high enough density to become dangerous, they would simply begin to die until they reach a safer, lower density. In order to first test that our cassette works, we ligated the agr promoter upstream of GFP, so that whenever the cells reached a quorum, they would fluoresce green. Later, the GFP would be switched out for a CCDB, a death gene.