Team:Cambridge

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
-
 
-
 
{|align="justify"
{|align="justify"
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
|You can write a background of your team here.  Give us a background of your team, the members, etc.  Or tell us more about something of your choosing.
Line 6: Line 4:
|-
|-
|
|
-
''Tell us more about your project. Give us backgroundUse this is the abstract of your projectBe descriptive but concise (1-2 paragraphs)''
+
Previous iGEM teams have focused on genetically engineering bacteria to respond to novel inputs – for example light, or biologically significant compounds. There is an unmistakable need, therefore, to also develop clear, user-friendly outputs, especially for use with biosensorsThe most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy.  However, how much easier would it be if we could simply see the output with our own eyes?  The Cambridge 2009 iGEM team is engineering E. coli to produce a range of pigments in order to equip future projects with better, more reliable, discreet outputs under logic control.  Further, our bacteria utilize a toggle switch that guarantees pigment production after just a brief exposure to the desired input.   
|[[Image:Team.png|right|frame|Your team picture]]
|[[Image:Team.png|right|frame|Your team picture]]
|-
|-

Revision as of 13:11, 20 July 2009

You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
Example logo.png

Previous iGEM teams have focused on genetically engineering bacteria to respond to novel inputs – for example light, or biologically significant compounds. There is an unmistakable need, therefore, to also develop clear, user-friendly outputs, especially for use with biosensors. The most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy. However, how much easier would it be if we could simply see the output with our own eyes? The Cambridge 2009 iGEM team is engineering E. coli to produce a range of pigments in order to equip future projects with better, more reliable, discreet outputs under logic control. Further, our bacteria utilize a toggle switch that guarantees pigment production after just a brief exposure to the desired input.

Your team picture
Team Example


Home The Team The Project Parts Submitted to the Registry Modeling Notebook

(Or you can choose different headings. But you must have a team page, a project page, and a notebook page.)