Team:Cornell/Project

From 2009.igem.org

(Difference between revisions)
(Design)
(Design)
Line 9: Line 9:
 +
[[Image:Module 1 Inactive.jpg|600px|center]]
 +
[[Image:Module 1 Active.JPG|600px|center]]
Our second cadmium sensing module is based on the transcription of the Mn(2+) and Cd(2+) influx protein MntH. mntH is part of MntR regulon which is downregulated in the presence of Cd(2+).[1] By using regulatory region of mntH and attaching to an appropriate ribosome binding site and Yellow Fluorescent Protein(BBa_E0030), we can use this module as another measure of the intracellular Cd(2+) concentration. Therefore as intracellular Cd(2+) concentrations rise, we expect to see a decrease in fluorescence at the peak emission wavelength for YFP at 527 nm.
Our second cadmium sensing module is based on the transcription of the Mn(2+) and Cd(2+) influx protein MntH. mntH is part of MntR regulon which is downregulated in the presence of Cd(2+).[1] By using regulatory region of mntH and attaching to an appropriate ribosome binding site and Yellow Fluorescent Protein(BBa_E0030), we can use this module as another measure of the intracellular Cd(2+) concentration. Therefore as intracellular Cd(2+) concentrations rise, we expect to see a decrease in fluorescence at the peak emission wavelength for YFP at 527 nm.
-
 
+
[[Image:Module 2 Inactive.JPG‎|600px|center]]
 +
[[Image:Module 2 Active.jpg|600px|center]]

Revision as of 20:25, 17 October 2009

Contents

Project Details

Design

To create a biosensor dependent on Cd(II) concentration, we decided to engineer the existing metal ion homeostasis system in Bacillus subtilis. In B. subtilis metal ion transport is tightly regulated. Though the organism requires trace amounts of metals, high levels interfere with cellular processes. Cd(2+) enters B. subtilis through the manganese ion influx protein MntH. Intracellular Cd(2+) concentration is under the regulation of several pathways, one of which is the CadA efflux protein. CadA is a P-type ATPase that effluxes Cd(2+). Transcription of the cadA gene is regulated by CzrA (formerly YozA) a ArsR/SmtB family repressor that binds the cadA regulatory region and is released when bound by cadmium ions.[1] Our first cadmium sensing module is based on the regulatory region of cadA. By attaching this regulatory region to an appropriate ribosome binding site and the gene for Cyan Fluorescent Protein (BBa_E0020), the production of CFP and by extension the fluorescence at the peak emission wavelength of CFP becomes a function of intracellular Cd(2+) concentration. Measuring the emission at 476 nm will allows us to indirectly measure the intracellular Cd(2+) concentration. As intracellular Cd(2+) concentrations rise we expect to see an increase in fluorescence at the peak emmission wavelength for CFP.


Module 1 Inactive.jpg
Module 1 Active.JPG


Our second cadmium sensing module is based on the transcription of the Mn(2+) and Cd(2+) influx protein MntH. mntH is part of MntR regulon which is downregulated in the presence of Cd(2+).[1] By using regulatory region of mntH and attaching to an appropriate ribosome binding site and Yellow Fluorescent Protein(BBa_E0030), we can use this module as another measure of the intracellular Cd(2+) concentration. Therefore as intracellular Cd(2+) concentrations rise, we expect to see a decrease in fluorescence at the peak emission wavelength for YFP at 527 nm.

Module 2 Inactive.JPG
Module 2 Active.jpg


By using two modules we can enhance our signal to noise ratio and cancel out stochastic error in our readings. The regulatory proteins for both are modules are not completely specific to the Cd(2+) ion. In order to correct for false positive readings we will compare our fluorescence measurements to baseline values in cells induced without Cd(2+).

The Experiments

Part 3

References

[1] Helmann, John D., Charles M. Moore, Ahmed Gaballa, Monica Hui, Rick W. Ye (2005), Genetic and physiological responses of Bacillus subtilis to metal ion stress. Molecular Microbiology 57(1), p.27-40