Team:EPF-Lausanne/Analysis

From 2009.igem.org

(Difference between revisions)
(RMSD of selected atoms compared to initial position along time)
(Salt bridges)
Line 660: Line 660:
==Salt bridges==
==Salt bridges==
-
As we wanted to redo the analysis from Schulten's article, we looked for salt bridges. VMD can easily compute this, it even propose an easy GUI. Standard configuration is just fine for now. You'll have a log file containing the list of nitrogen-oxygen susceptible of forming a salt bridge. You'll also get a file for each bridge containing the distance between both atoms along the simulation.
+
<html>
 +
<script type="text/javascript" language="JavaScript"><!--
 +
function HideContent(d) {
 +
document.getElementById(d).style.display = "none";
 +
}
 +
function ShowContent(d) {
 +
document.getElementById(d).style.display = "block";
 +
}
 +
function ReverseDisplay(d) {
 +
if(document.getElementById(d).style.display == "none") { document.getElementById(d).style.display = "block"; }
 +
else { document.getElementById(d).style.display = "none"; }
 +
}
 +
//--></script>
-
In the light state, we have 9 salt bridges witin the protein and 12 if we consider the protein and the flavin (use "protein or resname FMN" as selection).
+
<p>
-
 
+
<a href="javascript:ReverseDisplay('hs8')">Click here to show/hide</a>
-
:ASP471-ARG467
+
</p>
-
:GLU409-ARG442
+
-
:FMN450-FMN450
+
-
:ASP540-LYS544
+
-
:ASP432-ARG442
+
-
:'''FMN450-ARG451'''
+
-
:GLU457-LYS489
+
-
:GLU444-LYS485
+
-
:ASP522-ARG521
+
-
:ASP424-ARG451
+
-
:GLU475-LYS533
+
-
:'''FMN450-ARG467'''
+
 +
<div id="hs8" style="display:none;">
 +
<p>
 +
As we wanted to redo the analysis from Schulten's article, we looked for salt bridges. VMD can easily compute this, it even propose an easy GUI. Standard configuration is just fine for now. You'll have a log file containing the list of nitrogen-oxygen susceptible of forming a salt bridge. You'll also get a file for each bridge containing the distance between both atoms along the simulation.
 +
<br><br>
 +
In the light state, we have 9 salt bridges witin the protein and 12 if we consider the protein and the flavin (use "protein or resname FMN" as selection).
 +
<br>
 +
<br><span style="font-family: Courier;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ASP471-ARG467
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GLU409-ARG442
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;FMN450-FMN450
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ASP540-LYS544
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ASP432-ARG442
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>FMN450-ARG451</b>
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GLU457-LYS489
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GLU444-LYS485
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ASP522-ARG521
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ASP424-ARG451
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GLU475-LYS533
 +
<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>FMN450-ARG467</b>
 +
<br><br>
Here is a plot for one of the bridges. We have to look for the max distance for a salt bridge.
Here is a plot for one of the bridges. We have to look for the max distance for a salt bridge.
-
[[Image:Salt_bridge.jpg|center]]
+
<img src="https://static.igem.org/mediawiki/2009/2/2a/Salt_bridge.jpg">
Line 718: Line 738:
</table>
</table>
</form></center>
</form></center>
 +
 +
</p>
 +
</div>
</html>
</html>
-
 
-
 
==RMSF==
==RMSF==

Revision as of 12:18, 8 September 2009


Analysis of Equilibrium





Scripts

As this page is getting crowded, we created another page to explain all the scripts we wrote. The current page has some kind of step by step tutorials, but if you want fast informations, you better go to the script page.


Examples

Maxwell-Boltzmann Energy Distribution

Click here to show/hide

Energies

Click here to show/hide

Temperature distribution

Click here to show/hide

Density

Click here to show/hide

Pressure as a function of simulation time

Click here to show/hide

RMSD for individual residues

Click here to show/hide

RMSD of selected atoms compared to initial position along time

Click here to show/hide

Salt bridges

Click here to show/hide

RMSF

After changing the script [see here], we perform an interesting analysis from these 2 files. First, we have to correct the RMSF, that can be linked to beta factor using this equation:

Beta rmsf.jpg

If you plot beta factor and RMSF, you get such a thing. center‎

This is a 1 nanosecond NPT run at 300°K. We hope to see a RMSF curve identical to the beta factor. It should only be shifted higher because of the increased temperature. But having a similar tendency would mean our simulation show oscillations similar to what was observed during crystallography. This is really a quite nice validation of our run!


Back to top