Revision as of 14:15, 17 September 2009 by Mstine (Talk | contribs)


Home The Team The Project Parts Submitted to the Registry Modeling Notebook



Glioblastoma multiform (GBM) is one of the most common forms of primary brain cancer, which usually results in fatality. To date, it has been difficult to overcome primary brain cancer resulting from GBM, primarily because the cancer- initiating cells are suspected to be highly resistant to current cancer therapies. The present study, focused on CD133+ cells found in primary GBM samples. CD133+ cells have shown resistance to hypoxia, irradiation, and some forms of chemotherapy. CD133+ hunting machines are created by genetically engineering microglial cells (BV-2) with two constructs using mammalian expression vectors and taking advantage of inherent qualities of the microglia such as; constantly sensing the surrounding environment, and quick motility. The engineered BV-2s will be equipped to locate the specific GBMs and label the targeted cells with a tat-GFP fusion protein. To create an in vivo-like environment, the cells will be grown in 3D collagen media. This creates a maze and challenges the microglia to actually seek out the cancer cells. Cell sorting technique is used to measure the accuracy in hitting positive targets, CD133+ cells. It is the goal of this study to show an alternative approach to cancer treatment, and to emphasize the power of biologically available options to fight the disease.

Project Details

Part 2

The Experiments

Part 3