Team:Washington-Software

From 2009.igem.org

(Difference between revisions)
(Abstract)
Line 44: Line 44:
==Abstract==
==Abstract==
-
<big>'''RoboLabBricks for Automated BioBrick Assembly'''</big>
+
<big>'''LegoRoboBricks for Automated BioBrick Assembly'''</big>
-
Commercial Liquid Handling Systems are extremely expensive, and are typically beyond the reach of the average molecular biologist interested in performing high throughput methods. To address this problem, our project consists of the design and implementation of an automated laboratory and demonstrate its use for performing high throughput BioBrick assembly. This low cost solution is built using commonly accessible LEGO bricks. We demonstrate a proof-of-principle use for BioBrick assembly by transferring colored dye solutions on a 96-well plate.
+
Commercial Liquid Handling Systems are extremely expensive, and are
 +
typically beyond the reach of the average molecular biologist interested
 +
in performing high throughput methods. To address this problem, our
 +
project consists of the design and implementation of a liquid handling
 +
system built from commonly accessible Legos. We demonstrate a
 +
proof-of-principle use for this system to perform BioBrick assembly by
 +
transferring colored dye solutions on a 96-well plate.
-
We introduce a new concept called RoboLabBricks. Currently the laboratory is built using three RoboLabBrick components: ALPHA (Automated Lego Pipette Head Assembly), BETA(Biobrick Enviormental Testing Apparatus), and PHI(Pneumatic Handling Intergace).
+
We introduce a new concept called LegoRoboBrick. The liquid handling system is build by designing and implementing 3 LegoRoboBrick modular components: ALPHA (Automated Lego Pipette Head Assembly), BETA (BioBrick
-
We will demonstrate that the same BioBrick assembly software can run on multiple plug-and-play RoboLabBrick instances with different physical dimensions and geometric configurations. The modular design of RoboLabBricks allows easy extension of new laboratory functionalities in the future.
+
Environmental Testing Apparatus), and PHI (Pneumatic Handling
 +
Interface). We will demonstrate that the same BioBrick assembly
 +
software can run on multiple plug-and-play LegoRoboBrick instances with
 +
different physical dimensions and geometric configurations. The modular
 +
design of LegoRoboBricks allows easy extension of new laboratory
 +
functionalities in the future.
==Project Goals==
==Project Goals==

Revision as of 20:02, 4 October 2009


This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have a team description page, a project abstract, a complete project description, and a lab notebook. PLEASE keep all of your pages within your teams namespace.



You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
Example logo.png

Tell us more about your project. Give us background. Use this is the abstract of your project. Be descriptive but concise (1-2 paragraphs)

Your team picture
Team Example


Home The Team The Project Parts Submitted to the Registry Modeling Notebook

(Or you can choose different headings. But you must have a team page, a project page, and a notebook page.)

Contents

Abstract

LegoRoboBricks for Automated BioBrick Assembly

Commercial Liquid Handling Systems are extremely expensive, and are typically beyond the reach of the average molecular biologist interested in performing high throughput methods. To address this problem, our project consists of the design and implementation of a liquid handling system built from commonly accessible Legos. We demonstrate a proof-of-principle use for this system to perform BioBrick assembly by transferring colored dye solutions on a 96-well plate.

We introduce a new concept called LegoRoboBrick. The liquid handling system is build by designing and implementing 3 LegoRoboBrick modular components: ALPHA (Automated Lego Pipette Head Assembly), BETA (BioBrick Environmental Testing Apparatus), and PHI (Pneumatic Handling Interface). We will demonstrate that the same BioBrick assembly software can run on multiple plug-and-play LegoRoboBrick instances with different physical dimensions and geometric configurations. The modular design of LegoRoboBricks allows easy extension of new laboratory functionalities in the future.

Project Goals

  • Implement a simple and cheap way to handle liquids in normal genome lab operations(portable genomic science lab)
  • Only uses lego mindstorm bricks
  • Document entire process so it can easily be replicated

Project Summary

Hardware

  • Lego Bricks
    • Commonly accessible industry standard

Firmware

  • RobotC
    • Made in CMU Robotics Academy
    • Enables floating point precision

Software

  • ALPHA module
    • Precise reverse triangulation using Rotational Matrix
    • Controller of Master-Slave Synchronization
    • Accurately positions pipette head
  • PHI module
    • Pneumatic control to suck and dispense fluid
    • Compression pump to "air-clean" system

Mathematical Modeling

Alpha

Problem

Given the following construction and point p, find the angles θ1, θ2, and θ3.

Constants

  • TR
    • Top radius
  • BR
    • Bottom radius
  • L
    • Linkage
  • CA
    • Control Arm
  • φ1 and φ2
    • Two angles

Construction

From the top to the bottom:

  • A circle centered at the origin with radius TR

RoboLabBrick Modules

Just like BioBricks are genes that can be connected to make a product, RoboLabBricks are robot modules that can be connected to make a Genomics Lab System.

File:RobotAlphaBetaPhi.jpg
Alpha module is at the top left, Phi module is at top right, Beta module is the rest of the robot.

Module ALPHA

ALPHA stands for Automatic Lego Pipet Head Assembly.

  • Created 8/21/2009
  • Consists of 3 double-jointed arms.
    • One joint is connected to the motor, and is controlled entirely by the motor.
    • The other joint moves in a sphere, and is loose. The end of this attaches to the platform which holds the pipet tip.
  • Videos
    • Robot in Action
      • This video shows that the module has high accuracy and precision. The stand is module Beta.
    • Two Robots
      • This video shows that the same code can be used for other versions of ALPHA. The only difference is 6 physical constants:
        1. Top Offset
        2. Bottom Offset
        3. Control Arm Length
        4. Linkage Arm Length
        5. Inter-arm Angle
        6. Gear Ratio
    • Old Video

Module BETA

BETA stands for Biobrick Enviorment Testing Apparatus.

  • Consists of a telescoping frame, and a big lego plate.
    • The telescoping frame is used for holding ALPHAs and PHIs.
    • the big lego plate is where you put the 96-well plates and petri dishes.

Module PHI

PHI stands for Pneumatics Handling Interface.

  • PHI is the pipette. It consists of two motors.
    • Motor 1.
      • When it moves in one direction, it builds up air pressure.
      • When it moves the other direction, it releases the air pressure.
    • Motor 2.
      • It is connected to a piston, so when the motor turns, it sucks or dispenses liquid.
  • Videos

Past Robots

Past Robots