Coming up with a project

Teach the Teachers Workshop May I6, 2009

Talk to people

 Previous iGEM projects
 igem.org

New organisms

New parts and tools for future teams

Most commonly used parts: B0015 - a terminator
F2620 - an inducible promoter B0034 - a RBS
R00II-lac promoter
Plasmid backbones

BBa_F2620
 3OC 6 HSL \rightarrow PoPS Receiver

Mechanism \& Function
A transcription factor (LuxR) that is active in the presence of a cell-cell signaling molecule $\left(3 \mathrm{OC}_{6} \mathrm{HSL}\right)$ is controlled by a regulated operator (PLteto-1). Device input is $30 \mathrm{C}_{6} \mathrm{HSL}$. Device output is PoPS from a LuxR-regulated operator. If used in a cell containing TetR then a second input such as aTc can be used to produce a Boolean AND function.

R0040 B0034 C0062 B0015 R0062 $P_{\text {Lteto-1 }}$ RBS luxR Term. Plux,R

Part Compatibility (qualitative)

$$
\begin{array}{ll}
\text { Chassis: } & \text { MC4100, MG1655, and DH5 } \\
\text { Plasmids: } & \text { pSB3K3 and pSB1A2 } \\
\text { Devices: } & \text { E0240, E0430 and E0434 }
\end{array}
$$

Transcriptional Output Demand (low/high input) Nucleotides: $0 / 6 \times N t$ nucleotides cell ${ }^{-1} \mathrm{~s}^{-1}$
Polymerases: 0 / 1.5E-1xNt RNAP cell ${ }^{-1}$
($\mathrm{Nt}=$ downstream transcript length)

$\begin{array}{ll}\text { Genetic: } & >92 />56 \text { culture doublings } \\ \text { Performance: } & >92 />56 \text { culture doublings }\end{array}$ Performance: $>92 />56$ culture doublings

> (low/high input during propagation)

Conditions (abridged)

Output: PoPS measured via BBa_E0240 Culture: \quad Supplemented M9, $37^{\circ} \mathrm{C}$
Plasmid:
Chassis:
Chassis: MG1655
*Equipment: PE Victor3 multi-well fluorimeter
${ }^{* *}$ Equipment: BD FACScan cytometer

Reuse and

Let the students choose

Help them make smart choices

- Figure out what's practical: How many assembly stages could the team possibly do over the course of the summer? That sets an upper limit to the size of the system.
- Design the project so that different modules can be done in parallel.
- It doesn't have to be a brand new idea.

Describe your project on your team wiki

Teach the Teachers Workshop May I6, 2009

