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The goal of the tutorial is to introduce Systems Biologists to the application of control theory to
biology. The tools of systems and control theory have been instrumental in the successful design of
countless man-made complex systems. Biologists, who are trying to reverse engineer complex living
networks, can benefit from the insights this theory can provide into the design of biological systems. Of
particular importance is understanding the role of feedback control in ensuring the robust behavior of
biological processes subjected to internal and external disturbances.

The intended audience is the general Systems Biology community. We will not assume technical
knowledge beyond what a typical biologist would be exposed to as an undergraduate and graduate
student. Relevant biological examples will be used to give a feel for more abstract concepts, followed up
by mathematical explanations that are presented in detail in the handouts. Prerequisites: understanding
of chemical and enzyme kinetics, familiarity with ordinary differential equations and linear algebra.

Tutorial Content

The tutorial will begin with a discussion of the connections between control theory and Metabolic
Control Analysis (MCA). This section will serve as an introduction to sensitivity analysis and some
of the basic tools of control theory. The next section will cover a specific control structure which plays
a vital role in man-made and biological mechanisms – integral control. The final section will examine
the use of feedback, both positive and negative, in cellular signaling systems. The emphasis will be on
building intuition through simple models and then extending this intuition with a more mathematical
description. There will be pointers to appropriate references for those who wish to study a topic area in
more detail. We hope that the attendees will come away from the tutorial with an appreciation for the
importance of feedback structures in biological networks and an appreciation for the contribution which
control theory can make in elucidating the behaviour of these systems.

A detailed description of the material to be presented in each section is as follows:

1. A Control Theoretic Approach to Metabolic Control Analysis

The field of Metabolic Control Analysis was developed to address the issues of control and regulation
in metabolic networks. Working from a rigorous mathematical foundation, this theory aims to quantify
the sensitivity of components of a network to perturbations, as well as to identify the inherent relation-
ships between these sensitivities. This analysis leads to an improved understanding of the nature of the
network. Sensitivity analysis also plays a crucial role in the theory of control engineering, as sensitivity
and robustness are key issues which must be addressed in any control system design.

We will provide a brief introduction to MCA and to some of the basics of control theory before
outlining some of their interconnections. Tools from control theory allow a generalization of the basic
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sensitivity analysis of MCA, which deals primarily with steady-state system response to small, constant
perturbations. We will examine how the steady state and transient response to small time-varying per-
turbations can be addressed, and how the theory can be extended beyond the linear regime. Finally, we
present an analysis of the main results of MCA – the Summation and Connectivity Theorems – from a
control engineer’s perspective.

Integral Feedback Control: From Homeostasis to Chemotaxis

In integral feedback control, the output error is integrated and then fed back into the system. This type
of control produces robust perfect regulation: the steady-state error approaches zero in the presence of
internal and external perturbations. Integral feedback is used ubiquitously in man-made systems, and is
likely to be a common control strategy in biological systems. In this section of the tutorial we will cover
the following topics:

(a) Examples of integral feedback control in biology from the molecular level (signal transduction) to
the organismal level (hormone physiology).

(b) Basic concepts in control theory illustrated by integral feedback. (c) The connection between integral
feedback and homeostasis described by the Internal Model Principle.

(d) Implementing a robust differentiator using integral feedback: the preferred chemotactic strategy for
motile organisms?

Cellular communication: Uses of positive and negative feedback

Engineering systems use feedback — both positive and negative — to achieve a variety of tasks. Specif-
ically: negative feedback is used to stabilize systems, to reject disturbances, and to improve the robust-
ness of systems. Amplifiers and oscillators rely on the use of positive feedback, as do digital switches.
To a large extent, signal transduction pathways are nothing but biological feedback controllers. In this
section of the tutorial we will examine mathematically how feedback accomplishes these tasks and
illustrate each of them with examples in biological signalling networks.
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1 A Control Theoretic Approach to Metabolic Control Analysis

1.1 Introduction

Much work has been devoted to determining the responses of biochemical networks to changes in their
environment or their internal components. These studies have been motivated both by direct application
to metabolic engineering and pharmaceutics as well as by the desire to improve our understanding of
the behaviour of these systems.

This sensitivity analysis has focussed primarily on the steady state (i.e. asymptotic) response of a
system to constant (i.e. step) changes in parameters. This is in part due to the relative difficulty of
obtaining experimental data on time-varying behaviour as opposed to measurements of steady states.
Moreover, in many cases steady state analysis is of primary interest; mechanisms which are under
homeostatic control tend to maintain steady-state behaviour with only small and often insignificant
transients. In such cases, steady state analysis provides a perfectly adequate description of system
behaviour.

However, there are cases in which a dynamic analysis of system response is crucial. This is clearly
the case for mechanisms whose nominal behaviour is time-varying, e.g. the cell cycle. Furthermore,
even systems for which steady-state behaviour is the norm exhibit dynamic responses to time-varying
perturbations, and such nonconstant disturbances are ubiquitous in the cellular environment. Investiga-
tion of the transient behaviour invoked in signal transduction networks or the role of Ca2+ oscillations
as a second messenger demand a dynamic analysis. This paper represents a step towards extending the
classical steady state sensitivity analysis to this more general case.

Analytic tools for the study of the sensitivity of biochemical systems have been developed within the
fields of Metabolic Control Analysis (MCA) [35, 18, 26] and Biochemical Systems Theory (BST) [58,
67]. This analysis is carried out in a linear (or log-linear) regime in which only small perturbations
are addressed. This restriction is necessary since it is only after linearization that the analysis becomes
tractable. In particular, the main results of MCA – the Summation and Connectivity Theorems – are
only valid in the domain of this local analysis.

The same approach is taken here – the linearized response of a biochemical system is considered.
The sensitivity analysis is extended by considering the response not just to constant parameter changes,
but also to time varying perturbations. This is achieved through a frequency domain analysis which
describes the response of the system to a canonical set of inputs (sinusoids). The response to arbitrary
perturbations can be reconstructed from this analysis by use of the Fourier transform.

This analysis can be interpreted as an extension of MCA by defining control and response coeffi-
cients as functions of the frequency of the oscillatory perturbation. The stoichiometric nature of the
network imposes constraints on the system behaviour which can be expressed by generalizations of the
Theorems of MCA.

Other generalizations of MCA to time-varying behaviour have appeared in the literature. Analysis of
time-varying sensitivity was carried out in [1, 24, 33, 37, 40]. The work presented in [12, 55] is closely
related to this paper, as it makes use of Fourier analysis to treat oscillatory behaviour. In those papers the
authors investigate the sensitivity of a forced oscillating system to step changes in its parameter values,
which is an orthogonal approach to that taken here. In the current work, the system is assumed to be at
steady state in the absence of disturbances, and the response to time varying perturbations is examined.
A similar analysis has been carried out in [56].
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1.2 Linear Model of a Stoichiometric Network

A network consisting of n chemical species involved in m reactions is modelled. The n-vector s is
composed of the concentrations of each species. The constant r-vector p is composed of the (external)
parameters of interest in the model. The m-vector valued function v = v(s,p) describes the rate of each
reaction as a function of species concentrations and parameter values. Finally the n by m stoichiometry
matrix N describes the network: component Ni, j is equal to the net number of individuals of species
i produced or consumed in reaction j. The network can then be modelled by the ordinary differential
equation

d
dt

s(t) = Nv(s(t),p) for all t ≥ 0. (1)

The vector p contains any external parameters which have a direct effect on the rates of the reactions
(e.g. kinetic constants of enzymes and external effectors).

Before embarking on an analysis of system (1) it is prudent to first consider any linear dependencies
inherent in the state variables of the system (which will simplify both the analysis and the computation).
Each structural conservation (e.g. conserved moiety) in the network corresponds to a linearly dependent
row in the stoichiometry matrix N. We follow the procedure and terminology described by Reder [54]
(see also [26]) in the reduction of the system.

Let n0 denote the row rank of N. If n0 = n, then no reduction is necessary. Otherwise, we begin
by re-ordering the rows of N so that the first n0 rows are linearly independent. Let NR be the reduced
stoichiometry matrix which results from truncating the last n−n0 rows of N. Since the truncated rows
can be formed by linear combination of the rows of NR, the matrix N can be written as the product

N = LNR

where the n×n0 matrix L, called the link matrix, has the form

L =
[

In0

L0

]
.

(Here and below the notation Iq will be used for the q×q identity matrix).

The advantage of this decomposition can now be realized. Since each structural conservation allows
one species concentration to be determined as a function of the others, we may decompose the species
vector s into an independent species vector si and a dependent species vector sd . Ordering the compo-
nents of s to match the rows of N, we write s = (si,sd) where si is an n0-tuple and sd is an (n−n0)-tuple.
(This involves a minor abuse of notation since s, si and sd are all column vectors.) Then equation (1)
can be written as

d
dt

[
si(t)
sd(t)

]
= LNRv(s(t),p, t) =

[
In0

L0

]
NRv(s(t),p, t) for all t ≥ 0.

Hence

d
dt

sd(t) = L0
d
dt

si(t) for all t ≥ 0,

and so sd(t)−L0si(t) is an integral of motion of (1), i.e. this difference is constant throughout the
evolution of the system. We introduce the constant (n−n0)-vector T to quantify this relationship. Any
trajectory of the system satisfies

sd(t) = L0si(t)+ T for all t ≥ 0, (2)
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where T is defined in terms of the initial conditions as

T = sd(0)−L0si(0).

In analysis and computation, attention can be restricted to the independent species si, since the
corresponding results incorporating the dependent vector sd are arrived at immediately through the re-
lationship (2). That is, one need only consider the reduced system

d
dt

si(t) = NRv(s(t),p, t) = NRv((si(t),L0si(t)+ T),p, t) for all t ≥ 0. (3)

Local analysis of system (3) will be carried out in the neighbourhood of a steady state (s0i ,p
0) of

interest. This point is brought to the origin by a change of variables in the states: x(t) = si(t)− s0
i , and

in the parameters: u(t) = p(t)−p0. The n-vector x and the m-vector u indicate the deviation from the
nominal state and parameter values of (3), respectively. The linearized system then takes the form

ẋ(t) =
[

NR
∂v
∂ s

L
]

x(t)+
[

NR
∂v
∂p

]
u(t), (4)

where the derivatives are taken at (s0,p0) := (Ls0
i + T,p0). By construction, this linearized system has

steady state (x,u) = (0,0).
The behaviour of the original system (3) is approximated by the behaviour of the linearized sys-

tem (4) near the nominal operating point. In particular, the linearized model faithfully represents the
response of the original system to small changes in the parameters (i.e. functions u(·) which remain near
zero). Standard sensitivity analysis involves gauging the response of system (4) to constant (i.e. step)
changes in the parameter levels. In extending this analysis to nonconstant perturbations, it is useful to
introduce the notations used in systems and control theory for analysing such systems.

1.3 Metabolic Control Analysis

To address the asymptotic response of the system to parameter perturbation, we consider the equation
which describes the steady state

0 = Nv(s,p). (5)

Taking a nominal value p0 for the vector of parameters p, we solve for the corresponding steady state s0.
Provided that the system Jacobian (N∂v

∂ s ) is nonsingular, equation (5) defines s as an implicit function of
p. We write s = s(p), with s(p0) = s0. The assumption of nonsingularity is standard (see e.g. [54]), in
particular, it holds whenever s0 is an asymptotically stable steady state, which is the only case the will
be experimentally observed.

The response of the steady state s0 to perturbations in the parameter values can be approximated
by the sensitivity of the function s(p) to changes in its argument, i.e. by the derivative ds

dp . This linear
approximation is accurate for small paramter perturbations, but in general will be less accurate as the
size of the perturbation grows.

Calculating, we find

0 =
d

dp
Nv(s(p),p) = NR

[
∂v
∂ s

L
dsi

dp
+

∂v
∂p

]
,
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where the derivatives are evaluated at s = s0, p = p0. Under our standing assumption that NR
∂v
∂ s L is

invertible, we find the sensitivity,

dsi(p)
dp

= −
(

NR
∂v
∂ s

L
)−1

NR
∂v
∂p

.

Sensitivitites of the dependent species follow from (2).
In addition to the sensitivity of the species levels we are also interested in the response of the steady

state fluxes through the network to changes in p. These fluxes are determined by the steady state reaction
rates. Considering the response in the steady state rate vector we find

dv(s(p),p)
dp

=
∂v
∂ s

ds
dp

+
∂v
∂p

=
∂v
∂ s

L
dsi

dp
+

∂v
∂p

= −∂v
∂ s

L
(

NR
∂v
∂ s

L
)−1

NR
∂v
∂p

+
∂v
∂p

.

1.3.1 Definitions

In MCA the system sensitivities derived above are known as the system responses. We follow [54, 26],
in making the following definition.

Definition 1.1 Given a nominal parameter value p0 and a corresponsing steady state s0 of system (1),
the independent concentration response coefficients are defined as the elements of the n by r matrix

Rsi :=
dsi(p)

dp
= −

(
NR

∂v
∂ s

L
)−1

NR
∂v
∂p

.

The rate response coefficients are defined similarly as the elements of the m by r matrix

Rv :=
dv(s(p),p)

dp
= −

{
∂v
∂ s

L
(

NR
∂v
∂ s

L
)−1

NR + Im

}
∂v
∂p

.

�

A traditional MCA presentation would also treat the special case of response coefficients in the case
that ∂v

∂p = I. These expressions, called control coefficients, indicate the sensitivity of the system to
perturbations in the reaction rates themselves.

The partial derivatives of the rate function v(·, ·) are also given special names in MCA, as follows.

Definition 1.2 The species elasticity εs and parameter elasticity εp are defined as

εs :=
∂v
∂ s

εp :=
∂v
∂p

.

�

One of the major successes of MCA was the derivation of the systemic response coefficients from
these component-specific elasticities (which are often more amenable to experimental measurment).
This was originally achieved through the Summation and Connectivity Theorems. However, as was
shown by Reder [54], the systemic response can be defined as a function of the elasticities (as above)
without any reference to the Theorems. The Summation and Connectivity relations are then used to
provide further insight into the system’s behaviour.
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1.3.2 The Summation and Connectivity Theorems

The MCA theorems can be stated as algebraic conditions satisfied by the control coefficients and elas-
ticities (see, e.g. [54, 26]). As in [33], they will be presented here as properties of the system response
coefficients. In each case, we consider the choice of the parameter p as part of the hypothesis. That is,
given a particular system, we ask what sort of responses might be achieved by singling out a particular
parameter p.

Proposition 1.3 (Connectivity Theorem) If a parameter is chosen so that εp = ∂v
∂p is in the span of the

columns of εsL, then there exists an r-vector m so that εp = −εsLm (note the minus) and

Rsi = m and Rv = 0.

Proposition 1.4 (Summation Theorem) If a parameter is chosen such that εp = ∂v
∂p lies in the nullspace

of N, then

Rsi = 0 and Rv =
∂v
∂p

.

In both cases the proof is an exercise in matrix multiplication.

The dual nature of the results is apparent. The first describes conditions in which parameters varia-
tion leads to changes in species concentrations while steady state reaction rates do not vary. The second
indicates conditions under which perturbations have the exact opposite effect.

1.4 Input-Output Systems

The standard model of a linear time-invariant input-output system has the form

ẋ(t) = Ax(t)+ Bu(t) for all t ≥ 0, (6)

where x is an n-vector, u(t) is an m-vector, and A and B are matrices of dimension n× n and n×m
respectively. The linearized model (4) takes this form with

A = NR
∂v
∂ s

L

∣∣∣∣
s=s0,p=p0

and B = NR
∂v
∂p

∣∣∣∣
s=s0,p=p0

.

The components of the input vector u can play a number of roles in the system. In control engineer-
ing, three of the most common are: reference input, control input, and disturbance.

A reference input provides an external signal which the system is expected to track. This reference
could be either constant (e.g. the set-point of a thermostat) or time-varying (e.g. the prescribed trajectory
of a missile). The input to information-processing systems often plays such a role. For example, ligand-
binding is a reference input for many signal transduction networks – the associated cellular activity
should track the ligand level in an appropriate manner.

A control is an input which is manipulable in some way. System design typically leads to feedback
laws acting through control channels, whereby the control input is chosen as a function of the state:
u(t) = k(x(t)). In biochemical systems, experimentally manipulable parameters can be considered as
control inputs. A more subtle analogy comes from the conceptual division of systems into subnetworks
acting on one another. For example, thinking of the influence of genetic networks on metabolism as
the action of a controller on a system, one can ask what measure of authority the controlling system
possesses and what sort of feedbacks have been implemented.
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A disturbance input can be included in the model as an attempt to incorporate the effect of external
perturbations on the system. Engineers typically design systems with these effects in mind; control
laws are chosen based on their ability to attenuate the effect of harmful disturbances. The ability of
biochemical networks to continue their function in the presence of perturbations is a central feature of
life. This homeostatic regulation is achieved through the appropriate use of feedback control.

In system analysis and design, it is often the case that certain functions of the state and input are of
specific interest. These are defined as the system outputs. A common example is an output consisting
of a single component of the state vector, e.g. the concentration of a particular molecular species. In the
linear systems framework, an output vector y is included by appending the definition

y(t) = Cx(t)+ Du(t) (7)

to (6), where C and D are matrices of appropriate dimensions.

In addressing biochemical systems, there are several outputs which may be of interest, including
species concentrations, reaction rates, pathway fluxes, transient times, and rates of entropy production
(cf. section 5.8.1 of [25]). In what follows, two output vectors of primary interest will be addressed.

The first is the vector of independent species concentrations, or more precisely, the deviations of
these concentrations from the nominal level. In the linearized model (4), these deviations are described
by the state x. This choice of output is thus characterized by

y(t) = x(t),

which is (7) with C = I (the n×n identity matrix) and D = 0.

The second output of interest is the vector of reaction rates. Again, it is the deviation from the
nominal rates which is the natural choice for y. This is approximated by the linearization of the reaction
rate function v(·, ·) at the nominal point as follows:

y(t) =
∂v
∂ s

Lx(t)+
∂v
∂p

u(t),

where the derivatives are evaluated at (s0,p0). This output takes the form of (7) with C = ∂v
∂ s L and

D = ∂v
∂p .

1.5 Frequency Response

Sensitivity analysis is concerned with determining the steady state response of a system to constant
(i.e. step) disturbances, e.g. an instantaneous change in the activity of an enzyme from one constant
level to another. Extending that analysis to determination of the asymptotic response to arbitrary time-
varying perturbations may seem a daunting task. Indeed, this is an intractable problem in general.
However, when restricting to linear systems, a satisfactory result can be achieved.

There are two features of linear systems which allow this analysis. The first is simply the linear na-
ture of their input-output behaviour which implies an additive property: provided the system starts with
initial condition x(0) = 0 (which corresponds to the nominal steady state of the biochemical network),
the output produced by the sum of two inputs is the sum of the outputs produced independently by the
two inputs. That is, if input u1(·) elicits output y1(·) and input u2(·) yields output y2(·), then input
u1(·)+ u2(·) leads to output y1(·)+ y2(·).

The additive property allows a reductionist approach to the analysis of system response: if a compli-
cated input can be written as a sum of simpler signals, the response to each of these simpler inputs can
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be addressed separately, and the original response can be found through a straightforward summation.
This leads to a satisfactory procedure provided one is able to find a family of “simple” functions with
the following two properties: 1) the family has to be “complete” in the sense that an arbitrary signal can
be decomposed into a sum of functions chosen from this family; and 2) it must enjoy the property that
the asymptotic response of a linear system to inputs chosen from the family is easily characterized. The
family of sinusoids (sines and cosines) satisfies both of these conditions.

That the set of sinusoids is sufficiently rich to allow any function to be written as a combination of
these functions was recognized by Fourier in the early 19th century and is a cornerstone of the theory of
signal processing (cf. e.g. [44, 65]). In general, if a function f (t) is periodic with period 2π, then one
can write

f (t) = a0 + a1 cos(t)+ b1 sin(t)+ a2 cos(2t)+ b2 sin(2t)+ · · · ,

where

ak =
1
π

∫ π

−π
f (t)cos(kt)dt and bk =

1
π

∫ π

−π
f (t)sin(kt)dt.

Figures 1-4 illustrate the case where f (t) is a square-wave. The Figures show the improvement in
approximation as more terms are added to the sum. That these coefficients can be found so readily is
a consequence of the orthogonality of the family of sinusoids. A more concise decomposition can be
reached by expressing the sinusoids in terms of exponentials through

cos(t) =
1
2
(eit + e−it) and sin(t) =

−i
2

(eit − e−it)

where i =
√−1. Rewriting in this form leads to the decomposition

f (t) =
∞

∑
k=−∞

ckeikt where ck =
1

2π

∫ π

−π
f (t)e−ikt dt. (8)

Such a decomposition allows an alternative characterization of the function f (·) in terms of the list
of Fourier coefficients . . . ,c−2,c−1,c0,c1,c2, . . .. These coefficients describe the frequency content (or
spectrum) of the function, recording the “density” of the corresponding sinusoid within the signal f (t).

Functions which are not periodic demand an extended analysis since they cannot be expressed as a
sum of sines and cosines at discrete frequencies. Such functions can only be expressed as a combination
of sinusoids by allowing components at all frequencies. The discrete list of frequency content is thus
extended to a function F(ω) which describes the content at each frequency ω. This function is known
as the Fourier integral or Fourier transform. The continuum of components expressed in F(ω) can be
“summed” by integration to yield the original function f (t) as follows,

f (t) =
∫ ∞

−∞
F(ω)eiωt dω where F(ω) =

1
2π

∫ ∞

−∞
f (t)e−iωt dt. (9)

The analogy between (8) and (9) is immediate.

In both cases the record of the frequency content of the function (i.e. the transform) is an alternative
characterization of the original function. While complete recovery of a signal from its transform involves
computation of the integral on the left-hand side of (9), important aspects of the nature of the signal can
be gleaned directly from the graph of the transform. In particular, one can determine what sort of
variations dominate the signal (e.g. low frequency or high frequency). As an example, consider the
functions f (t) = 1

1+t2 and g(t) = cos(4t) 1
1+t2 shown in Fig. 5. These functions share the same basic
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“profile”. However, f (t) follows a slowly varying path, while g(t) varies much more rapidly. This
difference in their nature is evident in comparison of their Fourier transforms, shown in Fig. 6. The
transform of f (·) is dominated by content at near-zero frequencies (corresponding to slowly varying
sinusoids) while the content of g(·) is concentrated at ω = 4, which is the frequency of its quasi-periodic
behaviour. (The introduction of “negative frequencies” is a consequence of the exponential description
of the sinusoids. The symmetry of the transform allows attention to be restricted to positive values of ω
in what follows.)

Now that it has been shown that any function can be decomposed into sinusoids, and that linearity
can be used to exploit such a decomposition, one question still remains. How is it that the response of
a system to these “simple” sinusoidal inputs can be recorded in a useful way? After all, the procedure
outlined above demands that one “sum” over a continuum of responses to arrive at the response to a
given signal. This will only be a useful strategy if the “simple” responses are easily characterized.
The second crucial property of linear systems which will be used is that, as mentioned above, their
response to sinusoidal inputs can be very easily described. (Indeed, it is this property of sines and
cosines which makes Fourier analysis a useful tool for analysing linear time-invariant systems. There
are many other complete and orthogonal families of functions into which one can decompose arbitrary
signals as described above, but only the sinusoids produce appropriately convenient outputs from linear
systems. The widespread use of Fourier analysis by electrical engineers is not due to the ubiquity of
alternating (i.e. oscillatory) electrical signals but rather to mathematical necessity.)

Consider the case of a system for which the input and output are scalars, referred to as Single-Input-
Single-Output (SISO) systems. For such systems, an oscillatory input elicits an asymptotic response
which can be characterized by just two numbers. More precisely, the output of a linear SISO system
whose input is a sinusoid of frequency ω tends asymptotically to a sinusoid of frequency ω. That is,
an oscillatory input of the form u(t) = eiωt produces an output y(t) which converges asymptotically to
Aeiωt+φ. This asymptotic response can be described by two numbers: A, the amplitude of the oscillatory
output, known as the system gain; and φ, the phase of the oscillatory output, known as the phase shift.
For systems which are not SISO, there is one such pair of numbers which characterizes the response of
each output “channel” (i.e. component) to each input channel. In the current discussion, this extension
is simply a matter of bookkeeping.

The conclusion of this discussion is that the behaviour of the system can be completely described by
the values of the gain A and phase shift φ at each frequency ω. These two numbers can be conveniently
described in terms of a single complex number Aeiφ with modulus A and argument φ. The system,
then, can be characterized by a complex-valued function defined over all frequencies. This function,
called the frequency response of the system can be derived through an algebraic calculation involving
the Laplace transform of the system, cf. e.g. [48]. (The Laplace transform is an extension of the Fourier
transform, see e.g. [65]). The frequency response for system (6) with output given by (7) is

H(iω) = C(iωI−A)−1B+ D, for all real ω.

This function will in general be matrix-valued but is scalar-valued in the SISO case. The frequency
response is usually derived as the restriction of a function of a complex variable z to the imaginary axis.
The complete function H(z) is known as the transfer function of the system.

Considering the two outputs of interest indicated above, the corresponding frequency response func-
tions are found as follows. For the independent species concentration output, we have C = I and D = 0,
and so the frequency response takes the form

Hsi
(iω) = (iωI−NR

∂v
∂ s

L)−1NR
∂v
∂p

. (10)
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For the reaction rate output, C = ∂v
∂ s L and D = ∂v

∂p give

Hv(iω) =
∂v
∂ s

L(iωI−NR
∂v
∂ s

L)−1NR
∂v
∂p

+
∂v
∂p

. (11)

These expressions define matrix-valued frequency responses of systems which have multiple output
and input channels. Each element of such a matrix-valued function is a scalar-valued function which
describes the response of one output channel to one input channel. For each such input/output channel
pair, the complex-valued function which describes the system behaviour can be plotted in a number of
ways. Perhaps the most useful of these visualizations is the Bode plot, in which the magnitude and
argument of the frequency response are plotted separately. The magnitude of the function value (the
system gain) is plotted on a log-log scale, where the gain is measured in decibels (dB) (defined by x dB
= 20log10 x). The argument of the function value (the phase shift) appears on a semi-log plot, with log
frequency plotted against phase in degrees. Examples of Bode plots are shown in Section 6.

The response of a system to a constant input (which can be thought of as a sinusoid with frequency
zero) is characterized by the frequency response at ω = 0. Making this substitution into (10),(11) the
response of the system is found as

Hsi
(0) = −(NR

∂v
∂ s

L)−1NR
∂v
∂p

and Hv(0) = −∂v
∂ s

L(NR
∂v
∂ s

L)−1NR
∂v
∂p

+
∂v
∂p

. (12)

These expressions can be derived from a standard sensitivity analysis of system (3). A framework for
such an analysis is provided by MCA, which is addressed in the next section.

1.6 Metabolic Control Analysis in the Frequency Domain

The expressions of system sensitivity in (12) are response coefficients in MCA. This definition can be
generalized to address the entire frequency response as follows.

Definition 1.5 The (frequency dependent) unscaled concentration response coefficients of system (3)
are the elements of the matrix function

Rsi
(ω) := Hs(iω) = (iωI−NR

∂v
∂ s

L)−1NR
∂v
∂p

. (13)

The (frequency dependent) unscaled rate response coefficients of system (3) are the elements of

Rv(ω) := Hv(iω) =
∂v
∂ s

L(iωI−NR
∂v
∂ s

L)−1NR
∂v
∂p

+
∂v
∂p

. (14)

Further, define the (frequency dependent) unscaled concentration control coefficients and rate control
coefficients as the elements of

Csi
(ω) = (iωI−NR

∂v
∂ s

L)−1NR and Cv(ω) =
∂v
∂ s

L(iωI−NR
∂v
∂ s

L)−1NR + I. (15)

�

These response coefficients exhibit the frequency response of the system. For nonzero frequency ω,
these coefficients will in general be complex-valued, describing both the gain and the phase shift of the
system response.
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The definitions given above describe unscaled sensitivities, as opposed to the more commonly used
scaled sensitivities of MCA. This “scaling” refers to the the treatment of relative, rather than absolute,
sensitivities. These relative sensitivities can be recovered from the definitions above through multipli-
cation by a scaling factor. To that end, define the diagonal matrices

Dsi = diag [s0
i ] Dv = diag [v(s0,p0)] Dp = diag [p0],

as in [26]. The scaled response coefficients describing the relative sensitivities are then given by

R̃si
(ω) = [Dsi]−1Rsi

(ω)Dp R̃v(ω) = [Dv]−1Rv(ω)Dp

where the tilde (∼) denotes the scaled coefficient. Scaled control coefficients are defined similarly.

1.6.1 MCA Theorems

The stoichiometric nature of a biochemical system enforces certain relations on the sensitivities of the
system with respect to parameter perturbations. For step perturbations, such relations are described by
the Summation and Connectivity Theorems of MCA. These relations can be extended beyond the ω = 0
case to the frequency response defined above. These generalized Theorems are stated below as algebraic
conditions involving the control coefficients, following statements found in [26, 54]. The statements can
be translated into results involving scaled coefficients by the appropriate multiplications.

Theorem 1 : Summation Theorem If a vector k lies in the nullspace of NR (and hence of N), then

Csi
(ω)k = 0 and Cv(ω)k = k

for all ω ≥ 0.

The statement follows directly from the definition of the control coefficients (15). This result can be
interpreted in terms of the system response as follows.

Interpretation: If the vector of parameters p is chosen so that the columns of ∂v
∂p lie in the nullspace of

NR then the responses are given by

Rsi
(ω) = 0 and Rv(ω) =

∂v
∂p

for all ω ≥ 0.

This result is immediate from the form of the linearized system (4), since such a parameter p leads
to B = NR

∂v
∂p = 0. In this case the species concentrations are completely decoupled from changes in p,

leading to the output responses indicated.

Theorem 2 : Connectivity Theorem For the control coefficients as described above,

Csi
(ω)

∂v
∂ s

L = −I+ iω(iωI−NR
∂v
∂ s

L)−1

and

Cv(ω)
∂v
∂ s

L = iω
∂v
∂ s

L(iωI−NR
∂v
∂ s

L)−1.
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The proof is an exercise in matrix algebra.

Interpretation: Note that if the parameter vector p is chosen so that the columns of ∂v
∂p lie in the span of

the columns of ∂v
∂ s L, then there exists a matrix M so that ∂v

∂p = ∂v
∂ s LM. In this case the system response

is described by

Rsi
(ω) = [−I+ iω(iωI−NR

∂v
∂ s

L)−1]M and Rv(ω) = iω
∂v
∂ s

L(iωI−NR
∂v
∂ s

L)−1M.

This result is not as easy to interpret as that provided by the Summation Theorem. It is insightful, at the
least, in the limiting case of low frequency disturbances. For the case ω = 0 the responses are given by

Rsi
(0) = −M and Rv(0) = 0,

which agrees with the standard statement of the Connectivity Theorem [26]. Thus for step disturbances
(i.e. ω = 0), the Connectivity Theorem provides a result orthogonal to the Summation Theorem in that
it indicates which perturbations will affect the species concentrations while leaving the reaction rates
unchanged. This conclusion can be extended by observing that for parameters which satisfy the condi-
tion above, slowly varying inputs (i.e. consisting of frequencies ω small compared to the eigenvalues of
NR

∂v
∂ s L) will have only a small effect on the reaction rates.

Considering the form of system (4) provides an immediate derivation of the standard Connectivity
Theorem (i.e. the ω = 0 case). Under the condition that ∂v

∂p = ∂v
∂ s LM the system reduces to

ẋ =
[

NR
∂v
∂ s

L
]

x+
[

NR
∂v
∂ s

L
]

Mu

=
[

NR
∂v
∂ s

L
]
(x+ Mu).

If NR
∂v
∂ s L is assumed nonsingular, a constant input u yields a unique steady state of x = −Mu, corre-

sponding to the form of the species response Rsi
(0). Moreover, in this case the reaction rate output takes

the form

y =
∂v
∂ s

L(x+ Mu)

and so is necessarily zero at steady state.

It can be noted that the limiting case of high frequency oscillations has an interpretation for general
perturbations. Considering the definitions of the response coefficients (13), (14), we see that

lim
ω→∞

Rsi
(ω) = 0 and lim

ω→∞
Rv(ω) =

∂v
∂p

.

These are precisely the responses produced under the Summation Theorem condition that NR
∂v
∂p = 0,

i.e. no effect on the species concentrations and direct effect on the reaction rates. This response to high-
frequency oscillation is characterized by the system’s bandwidth – the frequency above which the states
of the system are insensitive to oscillatory inputs. Perturbations with frequencies above the bandwidth
act more quickly than the timescale of the system. Essentially, the state cannot “keep up” with the
perturbations, and so reacts only to their average – in this case the zero input.
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Fig. 7: Simple pathway

1.7 Illustrations of the Frequency Response

The frequency response will now be illustrated by application of the analysis described above to some
simple biochemical networks. The first example will be a toy model of an unbranched metabolic chain.
This trivial system will serve to demonstrate the Theorems of MCA. Next, simple models of three
biological processes will be addressed – tryptophan biosynthesis, glycolysis, and regulation of bacterial
chemotaxis. Each of these networks employs a distinct feedback mechanism. The effect of this feedback
structure on the system’s behaviour will be considered.

1.7.1 Illustration of Theorems: Unbranched Metabolic Pathway

Consider the simple network shown in Fig. 7 with linear kinetics given by

v =

 v1
v2
v3

 =

 k1
k2s1 − k−2s2

k3s2

 .

Thus

∂v
∂ s

=

 0 0
k2 −k−2
0 k3


The Connectivity Theorem can be illustrated by considering changes in the parameter k2, as p = k2
yields

∂v
∂p

=

 0
s1
0

 ,

which is a scalar multiple of the first row of ∂v
∂ s . (Note L is the identity matrix in this case.)

With nominal parameter values of

k1 = 6, k2 = 2, k−2 = 1 and k3 = 3,

the steady state concentrations are (sss
1 ,sss

2 ) = (4,2). Setting x = (x1,x2) = (s1−4,s2−2) and u = k2−2,
the system can be written in the form (4) as

ẋ(t) =
[

NR
∂v
∂ s

]
x(t)+

[
NR

∂v
∂p

]
u(t)

=
[

1 −1 0
0 1 −1

] 0 0
2 −1
0 3

x(t)+
[

1 −1 0
0 1 −1

] 0
4
0

u(t)

=
[ −2 1

2 −4

]
x(t)+

[ −4
4

]
u(t)
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Fig. 8: Bode plot of species concentration response

The asymptotic response of the system to the input u(·) is described by the Connectivity Theorem.
In particular, for a step increase (i.e. ω = 0) there will be a steady-state decrease in s1 while s2 and all
reaction rates will tend to their nominal steady state values. This result is illustrated by the Bode plots
for each of the outputs.

Frequency responses for s1 and s2 are shown in Fig. 8 (constructed by choosing C = [1 0], D = 0
and C = [0 1], D = 0, respectively). These plots verify the expected behaviour of the system. For low
frequency inputs, the concentration of s1 responds asymptotically with a 180 degree phase shift and
a gain of 6.02 dB. This corresponds to the output being −2 times the input (as −2 has argument 180
degrees in the complex plane, and 20log10 2 = 6.02). As described by the Connectivity Theorem, the
asymptotic response of s2 to this input tends to zero at low frequencies (and indeed is zero at ω = 0
though this cannot appear on the log scale). Both species concentrations show a reduced response to
high frequency inputs, characterizing the system’s bandwidth.

The asymptotic response of the reaction rates is shown in Fig. 9 (found by taking C = [2 −1], D = 4
for v2 as output and C = [0 3], D = 0 for v3). As the Theorem indicates, the asymptotic response of both
reaction rates vanishes as the frequency tends to zero. At high frequencies, the nature of the response is
dominated by the “feedthrough” term D, which is 4 (= 12.04 dB) for v2 and 0 for v3.

In addition, the Theorems describe the response of the system to two other sets of inputs. The
Connectivity Theorem indicates that if k−2 and k3 are perturbed appropriately, the asymptotic response
to low frequency inputs will be zero for s1, v2 and v3. This can be easily verified, yielding Bode plots
which are similar to those presented above. The coordinated input prescribed by the Theorem can be
achieved by replacing k−2 with k−2 + u and k3 with k3 + 3u (so any change in k−2 is accompanied by a
three-fold greater change in k3).

Finally, the effect of the Summation Theorem can be reached by replacing k1 with k1 + 4u, k2 with
k2 + u and k3 with k3 + 2u. In this case the dynamics are independent of the input, as B = 0. The
frequency responses are then constant across all frequencies (0 for species concentrations, 4, 1 and 2 for
reactions rates v1, v2 and v3 respectively) as described by the Theorem.

The input-output behaviour of feedback structures will be considered in the next subsections. In
each case, it is the gain of the system which is of primary interest, so attention will be restricted to the
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Fig. 9: Bode plot of reaction rate response

magnitude part of the Bode plot. (The phase shift of the system is of major importance in addressing
the interconnections of systems, a topic which will not be addressed here).

1.7.2 Negative Feedback: Regulation of Tryptophan Production

The effect of negative feedback on a system will be illustrated by an analysis of the trp operon of
bacteria, which is responsible for tryptophan production. A number of models of bacterial tryptophan
biosynthesis have appeared in the literature, originating with the work of Goodwin [21]. The model of
Xiu et al. [69] will be considered here. (A more complete model, including explicit time delays, has
recently appeared [57].)

The model of Xiu et al. involves three state variables: the concentration of tryptophan P; the con-
centration of mRNA transcribed from the trp operon M, and the amount of expressed enzyme E . (It is
an abstraction of the model that tryptophan synthesis is catalysed by a single enzyme.) The dynamics
of the model describe production of mRNA, enzyme, and tryptophan, as well as the degradation and
dilution (due to cell growth) of each of these species. Cellular consumption of tryptophan is also in-
cluded. In addition, two negative feedbacks are incorporated. The first is the inhibition of enzyme E by
tryptophan. The second is the repression of transcription of mRNA, also tryptophan dependent. This
genetic regulation is achieved through the activity of a repressor molecule R which, when bound to two
units of tryptophan, interacts with an operator region of the operon, thus blocking transcription. The
interactions are shown in Fig. 10.

The dynamics are as follows

dM
dt

= KmD
Ot(P+ Kd)

P+ Kd + Rt
Ko

P
− (K1 + µ)M

dE
dt

= KeM− (K2 + µ)E

dP
dt

= KpE
K2

I

K2
I + P2 − (K3 + µ)P−2k2

RtP
P+ Kd

− (Pm
pro +β µ)µC

P
P+ Ks

.
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Fig. 10: Model of tryptophan biosynthesis

The parameters in the model are: the gene concentration D, the total operator concentration Ot , the
total repressor concentration Rt , the growth rate of the cells µ , the maximum protein concentration Pm

pro,
the influence of growth rate on cellular protein concentration β , the molar percentage of tryptophan in
cellular protein C, dissociation constants Kd , Ko and KI , a saturation constant Ks, and rate constants Km,
Ke, Kp, K1, K2, K3 and k2.

Nondimensionalizing and taking appropriate parameter values (see [69]) leads to the equations

dx(t)
dt

=
z(t)+ 1

1+(1+ r)z(t)
−0.909x(t)

dy(t)
dt

= x(t)−0.0293y(t)

dz(t)
dt

= y(t)
5210000

5210000+ z(t)2 −0.00936z(t)−0.024
z(t)

z(t)+ 1
−α5

0.00870z(t)
z(t)+ 0.00500

,

where x, y, and z are dimensionless concentrations of mRNA, enzyme, and tryptophan respectively. The
behaviour of the system under changes in the value of α5 will be addressed, with a nominal value of
α5 = 430. The effect of the enzyme inhibition on this response will be illustrated by considering two
values of the parameter r: strong feedback is exhibited with r = 10, while weaker feedback will be
addressed by taking r = 5. The concentration of tryptophan (x) is taken as the output of the system.

The (magnitude) frequency responses to changes in α5 are shown in Fig. 11. As discussed in [69], α5
describes the effect of cellular demand for tryptophan. The behaviour shown in the Figure is typical of a
negative feedback system. With weak feedback (r = 5), the effect of the input on asymptotic tryptophan
levels decreases monotonically as the frequency grows larger. Strengthening the feedback (to r = 10) has
two effects. The first is that the low frequency response is improved: as a standard sensitivity analysis
would show, increasing the feedback reduces the effect of perturbations on the output. The other feature
of stronger negative feedback is an increase in sensitivity at higher frequencies – to the point that the
feedback actually makes the system more sensitive to disturbances over a certain frequency range.

The knowledge that negative feedback can introduce such resonance effects is crucial to the design
of feedback systems. The tradeoff between improved response at low frequencies and increased sensi-
tivity at higher frequencies can be made explicit (for certain linear systems) by a constraint known as
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Fig. 11: Frequency response for trp operon model

Bode’s Integral Formula [6]. System designers work around this “performance constraint” by imple-
menting feedback which introduces increased sensitivity only at frequency ranges over which the system
is unlikely to be excited. One could postulate that the same is true of feedback mechanisms within the
cell: they have been crafted by natural selection in such a way that a trade-off is made between improved
response to common low-frequency inputs and amplification of rare disturbances at higher frequencies.
(Such an analysis has recently been applied to a model of glycolysis [16])

1.7.3 Regulation of Bacterial Chemotaxis: Integral Control

Lastly, a system employing integral feedback will be addressed. It was argued in [70] that the sig-
nal transduction network responsible for regulating bacterial chemotaxis achieves perfect adaptation
through negative feedback involving an integral of the regulated variable. This powerful design is a
regular feature in engineered feedback systems and no doubt is a common scheme in biochemical reg-
ulation. The analysis below is based on a model presented in [3]. A simplification of the model which
retains the feedback structure has been derived [28] as shown in Fig. 12.

The model describes four states for the receptor complex R, which can be bound or unbound by
ligand L, and methylated or demethylated. The reaction rates are given as

v1 = k1[R] [L]− k1m[RL]

v2 = kr([R]+ [RL])[R]− kb au
1[Rm]

v3 = kr([R]+ [RL])[RL]− kb ao
1[RmL]

v4 = k1[Rm] [RmL]− k1m[RmL],

where kr(·) is a function which will be defined below. Nominal parameter values are chosen as

k1 = 1000, k1m = 1000, kb = 1, au
1 = 1, ao

1 = 0.25.

Initial conditions are chosen so that the total receptor complex concentration (which is invariant) is
unity. The response to changes in the ligand concentrations will be considered, with a nominal value of
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[L]=1. The output of interest is the system activity level, which is taken as

A = au
1[Rm]+ ao

1[RmL].

Two choices for the function kr(·) will be addressed. As described in [3] and [70] the system
exhibits integral control action provided that the methylation reaction proceeds at saturation. This can
be achieved by taking kr([R] + [RL]) = 0.2

[R] + [RL] . In this case a simple calculation shows that

d
dt

([Rm] + [RmL]) = −A+ 0.2,

so that the steady state value of A is clearly independent of [L]. The magnitude Bode plot showing the
response in A to changes in [L] is shown in Fig. 13.

As expected, the response tends to zero at low frequencies and is zero at ω = 0. The response
reaches a maximum over a range of frequencies before dropping again at the system’s bandwidth.

Alternatively, the methylation reaction could be chosen as non-saturated. This can be implemented
by choosing linear dynamics with kr(·) = 0.2. This choice leads to the second frequency response
shown in Fig. 13. The behaviour at higher frequencies is very similar to that described above. However,
at low frequency a nonzero response is exhibited, indicative of negative feedback which does not employ
integral action.

Other dynamics can be considered by alternative choices for the function kr(·). By choosing sat-
urable nonlinear dynamics (e.g. Michaelis-Menten type) one can explore the range between the fre-
quency responses shown here. Such an analysis might capture the “true” nature of the chemotaxis
control system. Although the system appears to exhibit an integral controller, there can be no doubt that
the implementation is through a “leaky” integrator, and so the behaviour will be somewhere between
the two extremes considered above.
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2 Integral Feedback Control: From Homeostasis to Chemotaxis

2.1 Introduction

The goal of this section is to describe one particular type of feedback control, integral feedback, in
which the output error is integrated and then fed back into the system. This type of control ensures
robust perfect regulation: the steady-state error approaches zero in the presence of internal and external
perturbations. Integral feedback is used ubiquitously in technological systems, and is likely to be a
common control strategy in biological systems.

2.2 Primer on Integral Control

What is integral feedback control? It is a type of feedback structure that ensures the robust tracking of a
specific steady-state value so that the error approaches 0 despite parameter variation. The term integral
refers to the fact that the time integral of the system error is fed back into the system, not the error itself.
Integral controllers are ubiquitious in man-made systems. For example, the cruise-control in a car uses
integral control to maintain robustly the speed of the vehicle at the set point despite disturbances such
as the wind or a hill.

A block diagram of a simple linear system with integral feedback illustrates its chief features (see
Fig. 14). The plant or network, represented by the block with gain k, takes the input u and produces the
output y1. The difference between the output y1 and the desired steady-state output y0 is the error term
y. Then, y is integrated and fed back into the system. The key to integral control is that the feedback
term x =

∫
y so that

ẋ = y.

At steady-state the time derivatives of the variables go to 0, so that y → 0 as t → ∞ independent of the
values of the input u and the gain k. Hence, the error asymptotically approaches 0 as long as the system
is stable.
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Fig. 14: A block diagram of integral feedback control. The input is u, the gain is k, y is the net deviation
from the steady-state output y0, x is the feedback term.

2.2.1 Types of feedback control

There are three basic types of feedback control: (1) proportional control, the error term is multiplied
by a constant before being fed back; (2) integral control, error is integrated as described above; or (3)
derivative control, error is differentiated (see Fig. 15). Each type of feedback has beneficial features.
Proportional control corrects for “current” errors. One can adjust the amount of feedback by increasing
or decreasing the constant factor. Higher feedback gain is better at rejecting disturbances, but it also
causes the system to become less stable. As described above, integral control eliminates steady-state er-
rors. Finally, derivative control provides “anticipation” of upcoming changes, which increases damping,
improves stability, and decreases transient errors.

To capture the best properties of all three controllers, one can combine them into a proportional-
integral-derivative (PID) control system. The transfer function for a PID controller is written as PID(s)=
K(1+ 1

TIs
+TDs). One can obtain the desired performance by tuning the parameters K, TI , and TD to get

the best balance of steady-state error, transient behavior, and stability. It is helpful to think about more
complex controllers in these simple terms in order to gain intuition.

2.2.2 Transfer Function Interpretation

One can transform (Laplace) a time domain representation of a linear system into a frequency domain
description composed of transfer functions. Given a typical linear feedback system with plant P and
controller C, the sensitivity transfer function from a disturbance input to the output is S(s) = P(s)

1+P(s)C(s)
(see Fig. 15). We can then prove that if the input signal is a step of size k (U(s) = k/s), then y(t) → 0 as
t → ∞ iff S(s) has a zero at the origin [15].

In transfer function form, Y (s) = U(s)S(s) = kS(s)
s . If the feedback system is stable, then by the

final value theorem y(t) → kS(0) as t → ∞. Clearly, the right-hand side is zero iff S(0) = 0. An integral
feedback system possesses such a zero at the origin: S(s) = sP(s)

s+P(s) .
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Fig. 15: Basic types of feedback control. The block P represents the plant (e.g., signaling pathway),
and C represents the feedback control block. Proportional, integral, derivative and PID controllers are
defined. The transfer function from the input U to the output Y is calculated.

2.2.3 State-Space Interpretation

One can represent the dynamics of a system in state-space form as a set of first order differential equa-
tions: ẋ = f (x,u), y = g(x,u). The vector x is the state of the system (e.g., concentrations of the species),
and u is the input. For a linear system, we can simplify this description to the following matrix form:

ẋ = Ax+ Bu
y = Cx+ Du

One can introduce a new integral feedback state z with the dynamics ż =Cx+Du = y. Clearly, these
dynamics are sufficient to ensure that the steady-state error approaches zero. What about necessity? One
can demonstrate that integral control is necessary for robust perfect regulation in the following manner.

At steady-state ẋ = 0, so that x = −A−1Bu and y = (D−CA−1B)u. Thus, y = 0 at steady-state for
all constant u, iff either

[ C D ] = 0 or det

∣∣∣∣ A B
C D

∣∣∣∣ = 0

The former is the trivial case when y(t) = 0 for all t, and the latter holds iff ∃k �= 0 such that k[ A B ] =
[ C D ]. Thus, defining z = kx, we have ż = kx = k(Ax + Bu) = Cx + Du = y, which is the standard
integral control equation.

2.3 Examples of Integral Control in Biology

2.3.1 Bacterial Chemotaxis Signaling Pathway

Bacteria are able to sense gradients of attractants and repellents. The signal transduction pathway re-
sponsible for this behavior possesses several special features to ensure both exquisite sensitivity and
wide dynamic range. One such feature is perfect adaptation: the output of the pathway (flagellar ro-
tation) exactly returns to its prestimulus value even in the presence of continual stimulation so that
the steady-state level of output activity asymptotically approaches a constant value independent of the
attractant concentration.

24



The bacterial chemotaxis system is a two-component signaling system [64]. The receptor complex,
which consists of the receptor, the histidine kinase CheA, and the adaptor protein CheW, phosphory-
lates the response regulator CheY. Phosphorylated CheY interacts with the flagellar motor to induce
clockwise (CW) rotation and tumbling behavior. Attractant inhibits the receptor complex resulting in
counterclockwise (CCW) flagellar rotation and straight runs. Receptor complex activity is regulated by
methylation which mediates adaptation. Methylation by CheR increases receptor activity; demethyla-
tion by CheB decreases activity. Although there is no direct evidence, we assume that CheB senses the
activity state of the receptor by only demethylating active receptor complexes. This assumption results
in an important negative feedback loop.

Model of bacterial chemotaxis signaling There are many models of this system [61, 7, 23, 63]. We
have focused on a simplified version of the Barkai-Alon-Leibler model (BAL) [3]. The receptors in this
basic model possess two methyl groups instead of the usual four methyl groups. The focal point of this
model is the receptor complex, denoted E , which consists of Receptor + CheA + CheW. This complex
possesses two states: active and inactive. When active, E phosphorylates the response regulator protein
CheY to form CheY-P. System activity refers to the concentration of active receptor complexes.

The receptor complex can bind ligand and is modified by methylation on two sites (m = 0,1,2).
The ligand occupied and unoccupied forms are denoted Eo

m and Eu
m , respectively. CheR methylates the

receptor complex and CheB demethylates the receptor complex. The probability that a given species of
E is active depends on the methylation level and ligand occupancy of the receptor and is denoted αi

m
(i∈ {o,u}). A typical equation is as follows consisting of ligand binding, methylation and demethylation
terms:

dEo
0

dt
= (kl lE

u
0 − k−lE

o
0)− (VmthE0o)+ (Vdmth[E1o ·a1o])

A more complete listing of the model can be obtained from the SBML file for this model
(ICSB2002 Chemotaxis.sbml).

2.3.2 Robust versus non-robust perfect adaptation

Experimental results Alon, Leibler and colleagues tested the robustness of perfect adaptation to dra-
matic changes in the concentration of key components of this pathway [2]. They demonstrated that as
the methylase CheR was varied over a 50-fold range, the adaptation precision remained close to perfect.
They went on to show that perfect adaptation was robust not only to changes in levels of CheR, but also
to changes in the concentration of CheB, receptor, and CheY.

Theoretical results Is it possible to model perfect adaptation in bacterial chemotaxis? Most models
in the literature indeed are able to reproduce perfect adaptation, but only through fine-tuning of the
model parameters. Perfect adaptation is non-robust in these models because altering a parameter dis-
rupts perfect adaptation. Alternatively, one can imagine that perfect adaptation is a structural property
of the system, insensitive to parameter variation, perhaps resulting from a particular feedback control
mechanism. To distinguish between these two types of models, we have systematically varied model
parameters and tested for perfect adaptation using continuation methods.

In Model A, the parameter that was varied was the total receptor concentration over a 100-fold range
(see Fig. 16A). On the y-axis we plotted the steady-state output for three concentrations of ligand as we
varied the total receptor concentration. As one can see, perfect adaptation was achieved for only one
value of receptor concentration, 8 mM.
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A.
B.

Fig. 16: Robust and nonrobust perfect adaptation. The dependence of steady-state system activity on
total receptor concentration was calculated by using equilibrium analysis for three concentrations of
chemoattractant: (i) L = 0 (solid), (ii) L = 1 µM (dashed), and (iii) L = 1 mM (dashed dot). The filled
circle indicates the value of total receptor used in the model. A. Model A, perfect adaptation exists only
at a single value of total receptor. B. Barkai-Alon-Leibler model, perfect adaptation holds for a range of
total receptor concentration.

In the BAL model, the steady-state receptor at the 3 concentrations of attractant completely super-
imposed as one varied the total receptor concentration (see Fig. 16B). Perfect adaptation was robust to
a 100-fold change in receptor concentration.

Bifurcation diagram One is often interested in studying the dynamics of a system as a function of a
specific parameter (e.g., total receptor concentration). In some cases, the dynamics change quantitatively
– the steady-state value of the output in Fig. 16 increased as total receptor increased. In other cases, the
dynamics may change qualitatively with the steady-state disappearing or becoming unstable, or with
new steady-states being created. These qualitative changes in dynamics are termed bifurcations, and
are best depicted in bifurcation diagrams [66]. Programs such as AUTO [14] can be used to generate
bifurcation diagrams from a differential equation model.

Implementation of integral control in chemotaxis system How is integral control implemented in
the BAL model of the chemotaxis system? A simplified version of the derivation is shown here. The
variable x represents the methylation state of the receptor. The change in x, ẋ, equals the methylation
rate r minus the demethylation rate. Using the assumption that CheB only demethylates active receptor
complexes so that the demethylation rate is a linear function of A, we obtain the following: ẋ = r−bA.
At steady-state, ẋ = 0, r = bA, and hence the steady-state activity level A0 = r/b. We can rewrite this
as the familiar ẋ = −b(A−A0) = −by. The key point is that if r and b are independent of u, then this
system will exhibit perfect adaptation that is robust to changes in the system parameters.

2.3.3 Blood Calcium Regulation

The level of calcium in the blood is carefully regulated against disturbances in calcium utilization and
uptake. The two compounds parathyroid hormone (PTH) and vitamin D (VitD) play a central role in
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Fig. 17: Model of blood calcium regulation [17]. A disturbance d in calcium dynamics is attenuated by
the control action u mediated by PTH and vitamin D, which are represented by the block C. The error e
is the current level of calcium, [Ca], minus the set point level of calcium, [Ca]0.

this regulation. They control how much calcium is introduced into the blood from the intestine (vitamin
D) and from the bone (PTH). El-Samad and Khammash have formulated the following model [17] of
these dynamics in mammals. The model is illustrated schematically in Fig. 17.

A disturbance d affects the rate at which calcium is taken up or removed from the blood; this
disturbance is compensated for by the action of PTH and vitamin D, u: d[Ca]/dt = u+d. The error is the
deviation from the steady-state blood calcium level (e = [Ca]− [Ca]0). It is known from physiological
measurements that the level of PTH is proportional to this error (e ∝ [PTH]). In addition, the rate
of production of vitamin D is proportional to the concentration of PTH, and assuming that vitamin
D has a slow degradation rate on the time scales of interest, we have d[VitD]/dt = k[PTH]. Thus,
we can calculate the error in terms of [PTH] or [VitD]: e = k1[PTH] = k2ḋ[VitD]/dt. Finally, if we
approximate the rate of calcium absorption from the intestine or bone as linear functions of [VitD] and
[PTH], respectively, we have the following equation for the control action: u = k3[PTH]+ k4[VitD] =
kpe+ ki

∫
e. Thus, this system exhibits proportional-integral (PI) control.

2.4 Integral control, the Internal Model Principle, and homeostasis

2.4.1 Homeostasis

Homeostasis is the dynamic self-regulation of a system to maintain essential variables within limits nec-
essary for acceptable performance in the presence of unexpected disturbances. Homeostasis is one of
the defining features of living organisms. A related concept is that of adaptation in which the system ad-
justs itself to be better suited to new environmental conditions. In signal transduction, adaptation refers
to the process in which the output returns toward its prestimulus value in the presence of a continuous
stimulus. Adaptation is important for maintaining sensitivity and dynamic range in sensory systems.

2.4.2 Necessity of integral control

An important point is that integral feedback control is not only sufficient, but also necessary for robust
perfect adaptation. Thus, even if the BAL model is invalidated by future experiments, another mech-
anism implementing integral control must be present in the bacterial chemotaxis signaling pathway to
explain the robust perfect adaptation. More generally, biological systems that require that calcium or
some other internal variable maintain a constant steady-state value despite step changes in some input
must have integral feedback as a structural feature of the network. A simple proof of the necessity
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of integral control for linear systems was provided in the previous section. A more general proof for
nonlinear systems is outlined in the references described below.

This necessity statement suggests that integral control is prevalent at all levels of biology from
cellular regulation, to organismal physiology to ecosystem balance. In complex man-made systems,
integral control loops are found at every level from CPUs to instruments to the entire vehicle. A single
oil refinery possesses more than 10,000 integral feedback loops.

2.4.3 Internal model principle

The internal model principle (IMP) is a generalization of the necessity of integral control. The principle
states that the robust tracking of an arbitrary signal requires a model of that signal to be in the controller.
The intuition is that the internal model counteracts the external signal so that y(t) → 0 as t → ∞ even in
the presence of parameter perturbations. For example, a controller containing an integrator is necessary
to track robustly a step signal, which is the impulse response of an integrator.

Francis and Wonhams proved IMP for linear systems [20]. Isidori and colleagues have established a
general framework for IMP in nonlinear systems [34]. Sontag has provided a succinct statement of IMP
relevant to biological systems. We will sketch the ideas behind these proofs in the tutorial.

It is important to appreciate that living systems are subject not only to constant changes (steps). but
also to perturbations that involve steadily rising or falling signals (ramps), and to even more complex
disturbance behaviors (e.g., neural signals). In order to maintain homeostasis, the feedback control sys-
tem implemented by the biological network must contain an internal model of the disturbance according
to IMP. An area for future research is cataloging these control structures and addressing the question of
how biology builds these internal models.

2.5 Integral Feedback and Chemotaxis

2.5.1 Temporal and Spatial Sensing of Gradients

Given a spatial gradient of some attractant, C(x, t), there are two basic chemotactic strategies: temporal
sensing and spatial sensing. In temporal sensing, the organism measures C at two different time points,
t1 and t2. If (C(t2)−C(t1))

(t2−t1) = dC
dt > 0, then the organism must be going up the gradient, and it continues

to move in the same direction. If dC
dt < 0, the organism must be moving down the gradient, and so it

reorients itself.

In spatial sensing, the organism measures C at two different locations, x1 and x2. If (C(x2)−C(x1))
(x2−x1) =

dC
dx > 0, then the organism moves in the direction of x2; otherwise, it moves in the direction of x1. Clearly
temporal sensing is suited for smaller motile organisms, whereas spatial sensing is preferable for larger
stationary organisms.

2.5.2 Estimating dC/dt Using Integral Feedback

An organism chemotaxing up an attractant gradient wants to maximize dC/dt. For temporal sensing,
this entails an accurate calculation of dC/dt, i.e., implementing a differentiator. The simplest arrange-
ment is to insert a differentiator into the forward signaling pathway from attractant receptor to effector
(i.e., flagella) so that Y (s) = sP(s)U(s), where U(s) is the input, sP(s) is the transfer function for the sig-
nal transduction cascade, and Y (s) is the output. It should be noted that sU(s) is the Laplace transform
of du/dt. Alternatively, one can construct the differentiator by placing an integrator into the feedback
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loop regulating the signaling pathway, i.e. integral control, so that Y (s) =sP(s)U(s)
P(s)+s . There are two advan-

tages to integral control: (1) noise reduction – an open-loop differentiator will amplify high-frequency
variations in the input signal, (2) robustness – variations in the plant could disrupt the differentiator.

While this model explains well the high frequency behavior of the network regulating chemo-
taxis [2], other system-theoretic aspects have not been considered. Bacteria live in very noisy envi-
ronments [5], however, and so differentiation must be coupled with a low-pass filtering mechanism. In
particular, after tumbling, cells must be able to discern their new alignment with the external chemoat-
tractant gradient while being subjected to high thermal noise. A simple model of this can be obtained
for this system and the optimal filter derived. The predicted optimal filter is a low-pass filter with a
bandwidth of approximately 0.3 rad/s (unpublished notes) which agrees closely with published models
of the chemotactic network [63].

In fact, having a integrator in the feedback loop accomplishes the dual goals of infinitely high gain
at low frequencies (integral control) and low gain at high frequencies (low-pass filtering) which seems
to be an optimal chemotactic strategy for systems that rely on temporal gradient sensing.

In the next section we consider a eukaryotic system’s chemotactic mechanism and demonstrate how
it relies on both negative and positive feedback.

3 Cellular communication: Uses of positive and negative feedback

In the previous sections we saw how integral control can be used to achieve robust perfect regulation.
Here we parallel the roles played by feedback control systems in engineering applications with those
present in some cell signaling pathways. We concentrate on the pathway associated with chemotaxis —
directed cell locomotion — in the social amoeba Dictyostelium discoideum [36]. For recent reviews of
the chemotactic signaling pathways involved in Dictyostelium in the biology literature, see [9, 32, 51].

Gradient sensing and chemotaxis in Dictyostelium discoideum

Dictyostelium are social amoebae (also known as slime molds) that live in the soil as separate, inde-
pendent cells, feeding on bacteria. When facing adverse environmental conditions, such as when all the
bacteria are consumed and starvation is imminent, they begin to interact to form multicellular structures.
This developmental process is illustrated in Fig. 18.

Approximately 6 hours after commencing development, up to 100,000 cells will signal each other
by synthesizing and releasing the chemoattractant cyclic-AMP (cAMP). Cells are able to detect pulses
of cAMP and use spatial differences in the concentration of cAMP to move towards each other and
aggregate. The ability to sense the direction of external chemical sources and respond by polarizing and
migrating toward chemoattractants or away from chemorepellants — a process known as chemotaxis
— is crucial for the survival of Dictyostelium. Many of the mechanisms employed by Dictyostelium to
chemotax — including the sensing of the chemotactic molecule, the activation of the signal transduction
pathway and the cell mobilization — are shared with other organisms, including mammalian cells.

3.1 Feedback: balance between robustness and gain

3.1.1 Negative feedback

As pointed out previously, one of the reasons for employing a negative feedback regulator to achieve
perfect adaptation is that this is a very robust architecture. This has been known in an engineering setting
since 1927 when Harold Black received a patent for the use of negative feedback in amplifiers [4]. As
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Fig. 18: Dictyostelium life cycle. Dictyostelium usually live as single cell amoebae. However, when
faced with adverse environmental conditions, they commence a developmental change. Approximately
six hours after this trigger, cells use chemotaxis, chemically-guided locomotion, to aggregate. Eventu-
ally, up to 105 cells can come together. The multicellular organism undergoes a series of morphological
changes that eventually lead to a resistant spore suspended on a stalk (24 h).

explained in Fig. 19, the use of negative feedback in a closed-loop system will decrease the overall
system’s sensitivity to parameter variations. While this is widely understood by control engineers, it is
really only now beginning to be noticed by biologists. In bacterial chemotaxis, which is also regulated
via an integral feedback control mechanism, there is now experimental evidence for this robustness.
Alon and co-workers, by varying the expression levels of some of the proteins regulating chemotaxis [2]
found that the adaptation property was maintained even when some of these levels changed up to 50
times; see [70] for a discussion. In Dictyostelium chemotaxis, there has been no systematic experimental
test of whether the adaptation mechanism is robust.

In addition to providing increased robustness to the system, negative feedback allows systems that
are open-loop unstable, to be stabilized. The earlies uses of such systems in engineering are the fly-
wheel governors used in the 18th century to control steam engines.

3.1.2 Negative feedback in Dictyostelium chemotaxis.

The basic mechanism regulating chemotaxis in Dictyostelium is shown in Fig. 20. Binding of the ex-
tracellular cAMP to the cAMP-receptors (CAR1) leads to the activation of several “downstream” pro-
cesses. CAR1 is coupled to a heterotrimeric G-protein; upon stimulation, the α subunit dissociates
from the β and γ subunits. The latter two subunits are known to activate a series of events involving a
cascade of phosphoinositides. [10] These lipids can be phosphorylated and dephosphorylated at a series
of sites. The key event in the chemotaxis response seems to be the phosphorylation of the lipid PIP2
(phosphatidylinositol 4,5-bisphosphate) by the kinase PI3K (phosphoinositide-3-kinase) to form PIP3
(phosphatidylinositol 3,4,5-trisphosphate) and its dephosphorylation by the phosphatase PTEN (phos-
phatase and tensin homolog).

In addition to playing opposite roles in the conversion of PIP2 to PIP3, the two enzymes PTEN and
PI3K also have complementary behavior. PTEN is initially bound to the inner leaf of the membrane
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Fig. 19: Sensitivity/gain tradeoffs in feedback control. For a constant gain amplifier A with feedback
gain k, this figure shows the tradeoff between small sensitivity and high amplification. The gain of the
system is defined as the ratio of output y over input r and is given by G = A/(1− kA). The sensitivity
is S = (∂G/∂A)/(G/A) = 1/(1− kA). In particular, negative feedback (k < 0) provides low sensitivity
(S < 1) at the cost of low gain (G < A). In Dictyostelium chemotaxis, this is used to “filter out” the mean
level of external signal. This allows the cell to chemotax at both high and low signal levels. Positive
feedback (k > 0) is used to amplify signals. In Dictyostelium this is used to increase the sensitivity to
spatial gradients of chemoattractant, thereby allowing the cell to chemotax to far away sources.

and is released into the cytosol upon stimulation. Simultaneously, PI3K , which is initially in the cy-
tosol, translocates to the cell membrane. The appearance of PIP3 creates a binding site that permits the
relocalization of CRAC (cytosolic regulator of adenylyl cyclase) to the plasma membrane.

When stimulated by a constant and persistent cAMP signal, the events that are downstream from
the G-protein exhibit adaptation. As with bacterial chemotaxis, adaptation here serves to filter out
spatially homogeneous steady-state levels of cAMP. By allowing the cell to focus on the differences in
concentration of cAMP, the cell is able to detect gradients both far and near to a cAMP source.

A mathematical model. Here we describe a possible model for the adaptation mechanism found in
Dictyostelium. We begin by postulating the existence of a response regulator that can exist in one of two
confirmations: active and inactive. Denote by R� (resp. R) the concentration of an active (resp. inactive)
components and assume that the total number is constant, so that: RT = R�(t)+ R(t).

One can think of the active and inactive forms of the regulator as representing the binding sites for
PI3K and PTEN respectively that exist on the cell membrane.

We assume that the activation and inactivation are regulated by a pair of enzymes: A, and I respec-
tively. Using mass action dynamics, an equation for the system is

dR�(t)
dt

= −k−rI(t)R
�(t)+ krA(t)R(t)

= −(
k−rI(t)+ krA(t)

)
R�(t)+ krA(t)RT (16)
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Fig. 20: Chemoattractant response. A. Before stimulation by extracellular cAMP, the cAMP receptor
(CAR1) is coupled to the heterotrimeric G-protein that consists of α , β and γ subunits. The lipid PIP2
and lipid phosphatase PTEN are found on the membrane whereas the kinase PI3K and CRAC are in
the cytosol. The latter can be fused with a green fluorescent protein (GFP) so that its translocation can
be monitored using fluorescent microscopy. This serves as a readout of the cell’s response. B. Upon
binding to the receptor, the G-protein α subunit dissociates from the βγ subunits. This triggers a release
of PTEN and a recruitment of PI3K to the inner leaf of the plasma membrane. C. PI3K phosphorylates
PIP2 creating PIP3. This creates a binding site for CRAC-GFP. D. After an initial transient, the cell
adapts to this stimulus. In particular, despite the fact that the ligand cAMP is still bound to the receptor,
and that the G-protein is still dissociated, the CRAC is observed to return to its exact prestimulus level.
PIP2, PIP3, PTEN and PI3K levels also return to prestimulus levels, though not perfectly in some cases.
The peak levels of activity, measured by membrane-bound CRAC occur approximately 5 seconds after
stimulation; by 20 seconds, most of the cell has adapted.

The steady-state fraction of active regulators is

lim
t→∞

R�(t)
RT

=
A(∞)/I(∞)

KR + A(∞)/I(∞)
(17)

where KR = k−r/kr. Note that it is the ratio of enzyme concentrations that determines the steady-state
concentration of active receptors. Now, assume that these enzymes are, in turn, regulated by the external
signal S which is proportional to chemoattractant concentration:

dA(t)
dt

= −k−aA(t)+ kaS(t) (18)

dI(t)
dt

= −k−iI(t)+ kiS(t) (19)

Suppose that the cell is initially at steady-state with cAMP concentration S0 �= 0 and that, at time
t = 0, this is changed to S1 �= 0. The enzyme concentrations obey

A(t) = A1 + e−k−at(A0 −A1)

I(t) = I1 + e−k−it(I0 − I1)
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Fig. 21: Activator/inhibitor model of adaptation. A. In this model, a response regulator can be found
in either an active, R�, or inactive, R, form. Changes between the two states are mediated by either the
activator A or inactivator I. These both respond to the external signal S. B. A change in the signal S at
0 s causes a rapid increase in the concentration of A(t) followed by a slower increase in that of I(t). By
about 20 s, both have reached steady-state values. The external signal level is decreased at 40 s causing
the opposite responses. C. The active response regulator output. During the time when A(t) but not I(t)
has reached its new equilibrium, there are transient changes in the concentration of R�(t). These subside
as I(t) “catches up” to A(t).

where Aj = SjKA, I j = SjKI , for j = 0,1 and KA = ka/k−a, KI = ki/k−i.

These expressions can then be replaced in (17) to show that the steady-state concentration of active
response regulators is independent of cAMP concentration. It follows that the system is rejecting the
step changes in cAMP perfectly.

Taking bacterial chemotaxis as a model, we would expect that a system that is rejecting step distur-
bances as this one is would have an integrator in the feedback path. To show that this is the case, we
rewrite the differential equation for R� as

dR�(t)
dt

= −(
k−rI(t)+ krA(t)

)(
R�(t)−S�(t)

)
(20)

where

S�(t) = RT
A(t)/I(t)

KR + A(t)/I(t)

Moreover,

A(t)
I(t)

=
A1

I1

1+ e−k−at(A0/A1 −1)
1+ e−k−it(I0/I1 −1)

=
A1

I1
+ “transient”

=
KA

KI
+ “transient”

Thus, S�(t) acts as an external disturbance consisting of a decaying transient and a persistent, constant
signal whose value depends only on kinetic parameters.
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Fig. 22: Integral feedback. Using the form of (20), the adaptation mechanism of Dictyostelium can be
seen to possess an integral feedback form with a precompensator. The signal S�(t) includes a persistent
component KA/KI and a decaying part.

The feedback system can now be redrawn as in Fig. 22. We see from the differential equations
for A(t) and I(t) that these enzymes act as a feedforward system specifying the constant reference
signal. The system of Fig. 21 then acts as an integral control feedback with time-varying gain given by
k(t) = k−rI(t)+ krA(t). Because of the form of (16), the closed-loop system is asymptotically stable
provided there exists an ε > 0, such that k(t) > ε for all time. This is guaranteed provided that the
external signal S(t) > δ for all t and some δ > 0.

Note that to generate step increases in response to the chemotactic source we require that the tran-
sient increase in A(t) be larger than that of I(t). If this is the case, S�(t) will also increase transiently
causing an increase in the concentration of R�(t). This is guaranteed, provided that k−a > k−i.

If we reverse this inequality, then an increase in chemoattractant concentration would result in a
decrease in the number of active response regulators. This does not seem to play a part in Dictyostelium
chemotaxis, but may be of significance in other systems. For example, in the chemotactic response of
nerve growth cones, it is known that the same chemical may act either as an attractant or repellant [47].
Our model could account for this by modulating either of the kinetic parameters k−a or k−r so as to
ensure that S(t) causes increases or decreases in R�, thereby turning chemical attraction into repulsion.

3.2 Engineering uses of positive feedback

As described in Fig. 19, positive feedback can give rise to an increase in the sensitivity of a linear
system. This was actually understood in engineering a full fifteen years before Black’s discovery [4]. If
positive feedback: k > 0 is chosen, the system gain will increase significantly, at the cost of increased
sensitivity to noise and other disturbances.

This engineering insight has led several groups to suggest mechanisms providing gradient amplifi-
cation based on positive feedback loops [30, 43, 46, 50, 52, 53].

3.2.1 Amplification and positive feedback

One drawback of the model presented above to describe Dictyostelium chemotaxis is that the resultant
spatial response for the binding sites is, at best, that of the external chemoattractant gradient. That is, a
10% difference in chemoattractant concentration between front and back can only give rise to an equal
10% difference in response. Experimental evidence is for greater differences in the response than in the
stimulus [51].

A possible model for amplification using positive feedback. In Fig. 23 a putative positive feedback
mechanism is outlined. Let p1, p2 and p3 represent the relative concentrations of PIP, PIP2 and PIP3,
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Fig. 23: Possible positive feedback configurations. A. This model shows the signaling cascade involv-
ing the different phosphoinositides. PIP, PIP2 and PIP3 are phosphorylated once, twice or three times
respectively. Phosphorylation of PIP2 is mediated by the kinase PI3K whereas dephosphorylation by the
phosphatase PTEN. B. In this scheme, a positive feedback loop is postulate from PIP3 to the production
of PIP2.

with p1 + p2 + p3 = 1 [29]. As a baseline, we point out that, if there is no feedback mechanism, the
concentrations of the lipids follow:

d p1(t)
dt

= −k1 p1(t)+ k−1 p2(t) (21)

d p3(t)
dt

= −k−2v(t)p3(t)+ k2u(t)p2(t) (22)

where u(t) and v(t) are the concentrations of PI3K and PTEN respectively. Solving for steady-state, we
arrive at:

p2 =
v

v(1+α )+ uαβ
, p3 =

uαβ
v(1+α )+ uαβ

where α = k1/k−1 and β = k2/k−2.

We now consider the positive feedback model of Fig. 23B. There is evidence in some organisms
other than Dictyostelium that also use the PIP2/PIP3 pathway for signaling that there is a positive feed-
back loop from PIP3 to at least one of the precursors, such as PIP [11]. We can account for this feedback
by modifying (21) according to:

d p1(t)
dt

= −k1

(
ε + p3(t)

)
p1(t)+ k−1 p2(t)

Rather than solving this for the general case, we will assume that the feedback gain is large enough so
that

d p1(t)
dt

≈−k1 p3(t)p1(t)+ k−1 p2(t)

We can now solve for the steady-state of the system. We find that the system undergoes a transcritical
bifurcation depending on the parameter γ = u/v. For small values of u/v, the only stable steady-state is
p3=0. The threshold occurs when

γth =
1

αβ
at which point

p3 =
γ−γth

γ+ 1/β
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This configuration could explain the amplified nonlinear response seen in gradient sensing in Dic-
tyostelium. In particular, the response regulator described in Section 3 could serve to regulate PI3K or
PTEN in such a way as to ensure that the steady-state level of γ is just below the threshold. When stim-
ulated by a chemoattractant gradient, only the front of the cell would have PI3K concentrations above
the threshold, and this ensure that only the front would respond. This would then explain the extreme
polarizations seen in Dictyostelium cells.

3.2.2 Oscillators and positive feedback

Besides providing for strong amplification, one of the uses of positive feedback in engineering circuits is
as a means of designing oscillators. Experimentally, this was discovered around the 1915 when several
inventors discovered the use of positive feedback to generate oscillatory signals [4].

cAR1
cAMP

CRAC cAMP

Autocrine

(Positive Feedback Loop)

PDE

(Intracellular)

ACA

cAMP
cAMP

Fig. 24: Autocrine loop. One of the second messengers turned on by extracellular cAMP binding
and resultant CRAC activation is the activation of the adenylyl cyclase of aggregation (ACA). This
is a membrane bound protein that, when active, synthesizes cAMP. This intracellular cAMP is then
secreted. The secreted cAMP can diffuse and signal other nearby cells; it can be destroyed by the
phosphodiesterase PDE; or it may cycle back to signal the cell that synthesized it. This positive feedback
loop is known as an autocrine loop.

One feature of the chemotactic signaling pathway of Dictyostelium is the autocrine loop shown
in Fig. 24 involving cAMP. Autocrine loops arise when a cell secretes a chemical that stimulates the
secretory cell itself.

Receptor binding of extracellular cAMP in Dictyostelium induces the activation of ACA which
leads to the synthesis of intracellular cAMP from adenosine triphosphate (ATP). This cAMP is secreted
into the extracellular medium where: 1) it can diffuse away from the cell; 2) find its way back to
the cell surface receptors; or, 3) be destroyed by the phosphodiesterase (PDE). A thorough analysis
of autocrine loops is complicated by the stochastic nature of the motion that governs the return of the
secreted molecule to the cell surface receptor [62], however, it is clear that a positive feedback loop is
established. This positive feedback path is coupled to the negative feedback mechanism that provides
adaptation described above. Together, these counteracting effects lead to the formation of cAMP waves
that can propagate as circular or spiral wave forms.

In the model of [45], a negative feedback attributed to cAMP-induced receptor desensitization
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through phosphorylation is introduced. We replace this desensitization with the adaptation mechanism
outlined in Section 3. For the positive feedback model, we mirror closely the assumptions of [45],
though the dynamics are simpler.

In particular, we first assume that the amount of concentration of internal cAMP is governed by the
differential equation

dC(t)
dt

= − k1C(t)︸ ︷︷ ︸
degradation

− k2C(t)︸ ︷︷ ︸
secretion

+k3[R
�(t)]2 + k4︸ ︷︷ ︸

synthesis

Here we have assumed that the amplification that is observed in the response of the cell is given by the
quadratic dependence on R� in the synthesis term. Also, we have added a small constant production
term (k4 	 1).

The external cAMP concentration is, in turn,

dS(t)
dt

= −k5S(t)︸ ︷︷ ︸
loss

+ k6C(t)︸ ︷︷ ︸
secretion

Note that, though they involve the same material, the secretion terms differ because of the differences in
volume between the internal and extracellular media. Also, the loss term in extracellular cAMP includes
that lost/gained from neighbouring cells as well as that degraded by the phosphodiesterase.

These equations are now coupled to (16), (18) and (19). To simplify the analysis, we will assume
that the equations governing R�, A and C are all “fast” so that we may replace these variables in the
remaining two differential equations by their steady-state values. In particular, we see that the system
reduces to

dI(t)
dt

= −a1I(t)+ a2S(t)

dS(t)
dt

= −a3I(t)+
a4S2(t)

(a5S(t)+ I(t))2 + a6

where a1 = k−i, a2 = ki, a3 = k5, a4 = k3k6k2
ak2

r R2
T /[(k1 + k2)(k

2−ak2−r)], a5 = krka/(k−rk−a), and a6 =
k4k6/(k1 + k2). The system can be simplified further by defining states

x =
a2

2a3

a2
1a4

S, y =
a2a3

a1a4
I

a new “time” τ = a3t, yielding

ẋ = −x+
x2

(ax+ y)2 + ε =: f (x,y) (23)

ẏ = −b(y− x) =: g(x,y) (24)

with a = a1a5/a2, b = a1/a3 and ε = a2
2a6/(a

2
1a4). A phase-plane analysis for this system is given

in Fig. 25. The equilibrium x = y ≈ 1/(1 + a)2 is stable iff b > (1− a)/(1 + a). Using the Poincaré-
Bendixson theorem, it is straightforward to show that a stable limit cycle exists when this condition
fails.

This simple model can account for the autonomous oscillations observed experimentally. Other
models can also account for the synchronization seen in cells [42, 49]. While these models differ into
the biochemical identities of activators and inactivators they all rely on an interplay between positive
and negative feedback to achieve this periodic oscillation.

37



0 1 2 3 4
0

1

2

3

4

0 0.25
0

0.25

0.5

0.5

x

y

f(x,y)=0

g(x,y)=0

g(x,y)=0

f(x,y)=0

limit cycle

limit cycle

Fig. 25: Limit cycle oscillation. Shown is the phase-plane analysis for the oscillator of (23) and (24).
Specifically, the parameters a = 1/2, b = 1/6 and ε = 0.01 were chosen so as to make the equilibrium
point at x = y = 4/9 unstable. Note that the nullcline for g(x,y) increases sharply as x ↓ ε > 0 (see the
insert). This allows application of the Poincaré-Bendixson theorem.

3.2.3 Memory and positive feedback

One final use of positive feedback in engineering systems is through the creation of a bistable system.
This principle is the basis on which such electrical components as the Schmitt trigger are designed [59].
Schmitt triggers combine high gain amplifiers with positive feedback to obtain transfer functions with
hysteresis. The resulting circuit is bistable — that is, it has two stable equilibria. The bistable system
demonstrates bistability as the response of the circuit at any moment is not determined solely by the
value of the input signal at that moment in time, but insteady by both the value of the input and the state
of the system.

Bistable systems in biology have been studied extensibly by Ferrell [19]. In Dictyostelium chemo-
taxis, the use of bistability has not been demonstrated conclusively. However, it is known that highly
polarized cells do exhibit a hysteretic memory while chemotaxing [13]. Moreover, this memory re-
quires an active cytoskeleton, as cells that have been immobilized by the addition of Latrunculin A
do not show this memory. It is therefore likely that positive feedback through the cytoskeleton could
provide this memory.
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3.3 Discussion

In recent years, biology has undergone a revolution. Traditionally, biologists have taken studied signal-
ing pathways by “breaking” these networks into their components to study them separately. While this
reductionist paradigm has led to many breakthroughs, it alone cannot provide a full understanding of
the system.

High-throughput technologies characteristic of the “genomic” and “proteomic” fields have emerged
which provided biologists with detailed parts lists of the systems involved.

-1

0

1 Input

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
Output

Time

-

+ VoVin

A

-

+ VoVin

B

C

A

B

Fig. 26: Same parts, different outputs. The circuits on the left demonstrate why knowing the parts list
of a circuit is not enought to know its function. A. The amplifier, resistor and capacitor are configured
with the capacitor in the feedback loop. B. The same three circuit elements are reconnected in B with
the resistor in the feedback path. C. The response of the systems. That from panel A (solid line) acts as
an integrator of the input voltage Vin whereas that from B (dashed line) acts in the completely opposite
way, as a differentiator.

Clearly, having a complete list of parts is desirable, but not sufficient to elucidate function. The en-
gineering example illustrated in Fig. 26 points to some of the possible problems. Here, three electrical
components: a resistor, operational amplifier and a capacitor, are arranged in two separate configura-
tions. A voltage input Vin is applied to both systems and the output voltage Vo is then measured. As
illustrated in Fig. 26C, the system in Fig. 26A (solid line) acts as an integrator (Vo =

∫ t
0 Vin(τ )dτ ) whereas

that in Fig. 26B (dotted line) is a differentiator (i.e. Vo = dVin(t)/dt.) Thus while the components of the
two systems are the same, their behaviors are complete opposites.

In biology, much time and effort has been spent in discovering the components. As this example
shows, however, it is not only the “parts list” of the system that determines the behavior of the system,
but how these components are connected. To understand the function of these systems it will be neces-
sary to have an understanding of how complex systems perform. A new field: “systems biology” has
emerged, in which the behaviour and relationships of all of the elements in a particular biological system
are investigated simulataneously while it is functioning [27, 38, 39]. Concepts from engineering play a
crucial role in this new field, including modularity, robustness, amplification, adaptation, etc. [22].

In this paper I have tried to illustrate the similarities between traditional control engineering tasks
such as robust disturbance rejection and amplification and those of signaling transduction pathways.
It should be clear that a control engineering understanding of these systems will greatly facilitate the
“reverse engineering” of these systems leading to a thorough understanding of their function.
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