Team:Heidelberg/Project

From 2009.igem.org

(Difference between revisions)
 
(44 intermediate revisions not shown)
Line 2: Line 2:
{{Template_HD_3}}
{{Template_HD_3}}
-
<html><body id="project">
 
-
<style type="text/css">
+
<html><body id="project" onload="setPageSize()">
-
h2 {padding: 10px 20px;
 
-
                        font-size: 18px;
 
-
                        color: eb8300;
 
-
                        font-decoration: none;
 
-
                        font-weight: bold;}
 
-
.gallery{ width: 640px;
 
-
                      }
 
-
.gallery p  {padding: 0 20px;
 
-
                        text-align: justify;
 
-
                        font-size: 12px;}
 
-
.gallery h3 {padding: 10px 20px;
 
-
                        font-size: 18px;}
 
-
.gallery img {margin: 0 15px 15px 17px;
 
-
                        border-color: #FFF;
 
-
border-style:solid;
 
-
text-align:center;
 
-
                        float:left;}
 
-
#super_main_wrapper {
 
-
                        position:absolute; left:0px; top:227px;
 
-
margin-bottom: 30px;
 
-
width: 975px;
 
-
align: center;
 
-
background-color: #ede8e2;
 
-
                }
 
-
                #super_main_wrapper * img, #super_main_wrapper * * img {border-color: #FFF;
 
-
border-style:solid;
 
-
text-align:center;}
 
-
                #SubWrapper {width: 647px;
 
-
                        float: left;
 
-
                        margin-left: 3px;
 
-
                        margin-top: 3px;
 
-
                        background-color: #ede8e2;}
 
-
                #SubWrapper * p, #SubWrapper p {padding: 0 20px;
 
-
                        text-align: justify;
 
-
                        font-size: 12px;}
 
-
                #SubWrapper * h3 ,#SubWrapper * ul, #SubWrapper h3, #SubWrapper ul{padding: 10px 20px;
 
-
                        font-size: 18px;}
 
-
                #news {width:320px;
 
-
                        height: 1000px;
 
-
                        margin-top: 3px;
 
-
                        float: left;
 
-
                        background-color: #d8d5d0;}
 
-
              #news p {padding: 0 20px;
 
-
                        text-align: justify;
 
-
                        font-size: 12px;}
 
-
                #news h3 {padding: 10px 20px;
 
-
                        font-size: 18px;}
 
-
              .clear {clear:both;}
 
-
</style>
 
      
      
<div id="super_main_wrapper">
<div id="super_main_wrapper">
<div id="SubWrapper">   
<div id="SubWrapper">   
-
<h2>Project Abstract</h2>
+
<a name="top"></a>
-
<p><b>English</b><br>
+
<center>
-
Early efforts in synthetic biology have focused on using prokaryotes as an engineering chassis, whereas novel developments indicate a shift towards an eukaryotic synthetic biology. The value of eukaryotic synthetic biology is manifold: in medical research, it will accomplish new ways of gene therapy; in plant biotechnology, it can contribute to the struggle for a sustainable food and energy solution. Finally, the ability to assemble and analyze complicated biological systems step by step will allow a revolutionary approach to fundamental research.
+
<img src="https://static.igem.org/mediawiki/2009/5/5d/HD_GraphicalAbstract_600.jpg"/>
-
Establishing new standards for iGEM, the Heidelberg 2009 team will be concerned with developing ways for measuring promoters in mammalian cells, a default chassis and a first evaluation of the recently postulated BioBrick beta proposal 2 (Tom Knight).
+
</center>
-
Considering the importance of controlling gene expression, our team's work will focus on natural and synthetic mammalian promoters. Our vision is to provide the synthetic biology community with a methodical library of such promoters (with different output strength and sensitivity to different regulatory proteins) and a model which can provide guidance for the development of further synthetic promoters. Our efforts will therefore, from the very beginning, equally entail bioinformatics and wet lab work.
+
<br>
-
As an early application for such a promoter library, our team will attempt to develop an assay which can monitor the activity of several pathways in one cell. Such an assay is of high value for biological research as it can be applied for studying stem cell differentiation, tumor formation, apoptosis and autophagy as well as drug response. Our team will apply the assay towards testing several anti-cancer drugs. A computer-based model will lay the foundations for future work. It will help us to build a logic that integrates the promoter activities and will allow us to predict the possibilities of a single functional output.<br><br></p>
+
<p>For higher resolution: <a href="https://static.igem.org/mediawiki/2009/a/a6/HD_GraphicalAbstract_high.jpg">Download Graphical Abstract</a></p>
 +
<br>
 +
<h2>Project Highlights </h2>
 +
<ul>
 +
<li>We are able to predict functional mammalian promoter sequences <a href="https://2009.igem.org/Team:Heidelberg/HEARTBEAT_database#In_vivo_test_of_predicted_sequences_shows_that_functional_promoter_can_be_predicted_by_HEARTBEAT">(go there)</a></li>
 +
<li>We have created a functional biochemical synthesis method for the generation of promoters libraries <a href="https://2009.igem.org/Team:Heidelberg/Project_Synthetic_promoters#Results">(go there)</a></li>
 +
<li>We have developed novel standards for measurement of promoters in mammalian cells <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement">(go there)</a></li>
 +
<li>4 RFCs, well characterized parts <a href="http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2009&group=Heidelberg">(Parts)</a> , <a href="http://openwetware.org/wiki/The_BioBricks_Foundation:RFC#BBF_RFC_41:_Units_for_Promoter_Measurement_in_Mammalian_Cells">(RFCs)</a></li>
 +
<li>First attempts to create a eukaryotic standard chassis <a href="https://2009.igem.org/Team:Heidelberg/stables">(Stable Cell Line)</a> </li>
 +
<li>Multicolor and multi-functional output devices for promoter characterization <a href="https://2009.igem.org/Team:Heidelberg/Project_SaO">(Output)</a> </li>
 +
<li>Isolation and characterization of natural promoters <a href="https://2009.igem.org/Team:Heidelberg/Project_Natural_promoters">(Natural Promoters)</a> </li>
-
<p><b>German</b><br>
+
</ul>
-
Während sich die anfänglichen Bestrebungen der Synthetischen Biologie auf prokaryotische Systeme beschränkten, zeichnet sich gegenwärtig ein Wandel hin zu eukaryotischen Systemen ab. Die synthetische Biologie in Eukaryoten kann von vielseitigem Nutzen sein: im Bereich der medizinischen Forschung könnten neuen Ansätzen in der Gentherapie entwickelt werden; in der grünen Biotechnologie wird die Synthetische Biologie zu einer nachhaltigen Lösung der weltweiten Energie- und Nahrungsprobleme beitragen. Letztendlich wird die Möglichkeit komplexe künstliche biologische Systeme zu erschaffen und zu analysieren einen revolutionären Ansatz in der Grundlagenforschung darstellen. Um neue Standards zu etablieren, wird das diesjährige iGEM Team Heidelberg sich mit der Einführung von neuen Messmethoden für Promotoren in Säugerzellen und mit der Entwicklung einer Standard-Zelllinie beschäftigen. Darüber hinaus werden wir eine erste Evaluation des kürzlich von Tom Knight postulierten BioBrick Beta Proposal 2 Standard durchführen. Eine kontrollierbare Genexpression ist essenziell in vielen Bereichen der synthetischen Biologie. Aus diesem Grund setzt sich unser Team die Entwicklung von natürlichen und synthetischen Promotoren zum Ziel. Unser Beitrag zur internationalen Gemeinschaft der synthetischen Biologie wird eine systematische Promotorbibliothek sein (mit verschiedenen Stärken und verschiedener Sensitivität gegenüber Transkriptionsfaktoren bzw. Signalwegen). Dafür werden wir ein Modell entwickeln, welches es uns erlaubt solche synthetischen Promotoren herzustellen. Als eine erste Anwendung für eine derartige Promotorbibliothek werden wir versuchen einen Assay zu entwickeln, welcher die Aktivität von mehreren Signalwegen in einer Zelle visualisieren kann. Ein solcher Assay ist für die biowissenschaftliche Forschung von höchster Bedeutung, da mit ihm Prozesse wie Stammzelldifferenzierung, Tumorentstehung, Apoptose und Autophagie, charakterisiert und identifiziert werden können, als auch physiologische Antworten von Zellen auf Medikamente.</p>
+
 +
<h2>Project abstract </h2>
-
</div> <!-- end SubWrapper -->
+
<p style="font-size:4mm;" align="justify">
 +
<a href="https://2009.igem.org/Team:Heidelberg/Project_German">(German)</a></li><br>
 +
Synthetic biology in mammalian systems will accelerate the pace of medical and fundamental research. Despite its huge potential, this field of <a href="https://2009.igem.org/Team:Heidelberg/Project_Introduction"><span style="font-size:6mm;">synthetic mammalian biology</span></a> is still in its infancy. Therefore, we want to lay foundations for the methodical usage of mammalian cells as chassis systems. For this purpose, two premises must be met: first, a mature cloning standard must be defined and standardized measurement protocols must be developed to ensure modularity and comparability of BioBrick constructs. Second, a comprehensive collection of biological parts and devices must be manufactured. </p>
-
<div id="news">  
+
<p style="font-size:4mm;" align="justify">A <span style="font-size:6mm;">cloning standard</span> for mammalian BioBrick constructs has not yet been established as there are virtually no mammalian parts in the Registry up to now. We therefore analyzed all standards postulated so far and propose the BioBrick <a href="http://dspace.mit.edu/handle/1721.1/45139 ">BB_2 proposal</a> (Tom Knight) for future work with mammalian parts. </p>
 +
<p style="font-size:4mm;" align="justify">The standardized <span style="font-size:6mm;">characterization</span> of eukaryotic parts and devices is very challenging. We have developed standardized procedures for comparable <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement">measurements</a> of promoter strength by transient transfection in mammalian cell lines. However, since mammalian cells, unlike bacteria and yeast, do not propagate plasmids, they will need to be stably transfected for an optimized characterization. To meet this requirement we created a preliminary <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement#A_stable_cell_line_for_promoter_measurement">cell line</a> which includes FRT sites in its genome enabling stable transfections at defined sites. </p>
 +
 +
<p style="font-size:4mm;" align="justify">We have manufactured a <span style="font-size:6mm;">library of promoters</span>, since they are a basic element of every biological construction kit. Promoters are crucial for the regulation of differential gene expression which is the fundamental principle of both natural and synthetic biological systems. However, natural promoters often underlie highly complex regulation mechanisms, which complicate the construction of stable synthetic networks. </p>
 +
 +
<p style="font-size:4mm;" align="justify">Therefore, we have developed and successfully applied a <span style="font-size:6mm;">synthesis method</span> for  <a href="https://2009.igem.org/Team:Heidelberg/Project_Synthetic_promoters">synthetic promoters</a>, and a strategy for their rational design. Our promoters can only be induced by predefined transcription factors. We claim that any synthetic promoter can be constructed by our methods.</p>
 +
 +
<p style="padding-left:20px; font-size:4mm;" align="justify"><span style="font-size:6mm;">Rational design</span> of promoters relies on <i>in silico</i> tools: based on an elaborate evaluation of over 4000 promoter sequences throughout the human genome, we can predict functional sequences for promoters containing only transcription factor binding sites of interest. The necessary information is stored in <a href="https://2009.igem.org/Team:Heidelberg/Project_heartbeat">HEARTBEAT</a> (Heidelberg Artificial Transcription Factor Binding Site Engineering and Assembly Tool). HEARTBEAT is equipped with a GUI enabling the users to design synthetic promoters suitable for their own purposes. Furthermore, relying on a computer model based upon fuzzy logic, the outcome of the designed promoter can be simulated. In a reverse process considering the output, the model helps in optimizing the input sequence. <i>We show that HEARTBEAT predicted sequences <a href="https://2009.igem.org/Team:Heidelberg/HEARTBEAT_database#In_vivo_test_of_predicted_sequences_shows_that_functional_promoter_can_be_predicted_by_HEARTBEAT">work</i> in vivo.</a></u1>
 +
 +
<p style="font-size:4mm;" align="justify">Synthetic promoters offer a <a href="https://2009.igem.org/Project_SaO"><span style="font-size:6mm;">huge potential</span></a> to fundamental research. For instance, they allow the construction of an assay monitoring several user-defined pathways at the same time. Also, controllable gene expression is very interesting for medical applications where it might enable selective targeting of cancer cells in virotherapy.</p>
 +
<a style="padding: 10px 15px;" href="#top">Go to Top</a>
 +
</div> <!-- end SubWrapper -->
 +
<div id="news">
 +
&nbsp;
</div>  <!-- end news -->
</div>  <!-- end news -->
</div> <!-- end Super_main_wrapper -->
</div> <!-- end Super_main_wrapper -->
 +
<script type="text/javascript">
 +
function setPageSize() {
 +
len = document.getElementById('super_main_wrapper').offsetHeight;
 +
document.getElementById('bodyContent').style.height = len + 'px';
 +
document.getElementById('news').style.height = len + 'px';
 +
document.getElementById('SupWrapper').style.height = len + 'px';
 +
}
 +
</script>
</body></html>
</body></html>

Latest revision as of 00:54, 22 October 2009



For higher resolution: Download Graphical Abstract


Project Highlights

  • We are able to predict functional mammalian promoter sequences (go there)
  • We have created a functional biochemical synthesis method for the generation of promoters libraries (go there)
  • We have developed novel standards for measurement of promoters in mammalian cells (go there)
  • 4 RFCs, well characterized parts (Parts) , (RFCs)
  • First attempts to create a eukaryotic standard chassis (Stable Cell Line)
  • Multicolor and multi-functional output devices for promoter characterization (Output)
  • Isolation and characterization of natural promoters (Natural Promoters)

Project abstract

(German)
Synthetic biology in mammalian systems will accelerate the pace of medical and fundamental research. Despite its huge potential, this field of synthetic mammalian biology is still in its infancy. Therefore, we want to lay foundations for the methodical usage of mammalian cells as chassis systems. For this purpose, two premises must be met: first, a mature cloning standard must be defined and standardized measurement protocols must be developed to ensure modularity and comparability of BioBrick constructs. Second, a comprehensive collection of biological parts and devices must be manufactured.

A cloning standard for mammalian BioBrick constructs has not yet been established as there are virtually no mammalian parts in the Registry up to now. We therefore analyzed all standards postulated so far and propose the BioBrick BB_2 proposal (Tom Knight) for future work with mammalian parts.

The standardized characterization of eukaryotic parts and devices is very challenging. We have developed standardized procedures for comparable measurements of promoter strength by transient transfection in mammalian cell lines. However, since mammalian cells, unlike bacteria and yeast, do not propagate plasmids, they will need to be stably transfected for an optimized characterization. To meet this requirement we created a preliminary cell line which includes FRT sites in its genome enabling stable transfections at defined sites.

We have manufactured a library of promoters, since they are a basic element of every biological construction kit. Promoters are crucial for the regulation of differential gene expression which is the fundamental principle of both natural and synthetic biological systems. However, natural promoters often underlie highly complex regulation mechanisms, which complicate the construction of stable synthetic networks.

Therefore, we have developed and successfully applied a synthesis method for synthetic promoters, and a strategy for their rational design. Our promoters can only be induced by predefined transcription factors. We claim that any synthetic promoter can be constructed by our methods.

Rational design of promoters relies on in silico tools: based on an elaborate evaluation of over 4000 promoter sequences throughout the human genome, we can predict functional sequences for promoters containing only transcription factor binding sites of interest. The necessary information is stored in HEARTBEAT (Heidelberg Artificial Transcription Factor Binding Site Engineering and Assembly Tool). HEARTBEAT is equipped with a GUI enabling the users to design synthetic promoters suitable for their own purposes. Furthermore, relying on a computer model based upon fuzzy logic, the outcome of the designed promoter can be simulated. In a reverse process considering the output, the model helps in optimizing the input sequence. We show that HEARTBEAT predicted sequences work in vivo.

Synthetic promoters offer a huge potential to fundamental research. For instance, they allow the construction of an assay monitoring several user-defined pathways at the same time. Also, controllable gene expression is very interesting for medical applications where it might enable selective targeting of cancer cells in virotherapy.

Go to Top