Team:Edinburgh

From 2009.igem.org

(Difference between revisions)
 
(418 intermediate revisions not shown)
Line 9: Line 9:
<html>
<html>
<head>
<head>
 +
 +
<!-- visitor map -->
 +
<img style="visibility:hidden;width:0px;height:0px;" border=0 width=0 height=0 src="http://counters.gigya.com/wildfire/IMP/CXNID=2000002.0NXC/bT*xJmx*PTEyNTUzNDM1OTQyMzQmcHQ9MTI1NTM*NDAxNjA3OCZwPTMyMzAwMiZkPW1hcGxvY28mZz*xJm89MjIwNzcxMGYzN2QwNGQyNDhkZGQxZGUwMjM*MWE2MDU=.gif" /><br><a href="http://www.maploco.com/view.php?id=3582469"><img border=0 style="visibility:hidden;height:0px;width:0px;" src="http://www.maploco.com/vmap/3582469.png" alt="Visitor Map"></a>
<!-- cluetip -->
<!-- cluetip -->
Line 14: Line 17:
<script src="https://2009.igem.org/Team:Edinburgh/jquerycluetip?action=raw" type="text/javascript"></script>
<script src="https://2009.igem.org/Team:Edinburgh/jquerycluetip?action=raw" type="text/javascript"></script>
<script src="https://2009.igem.org/Team:Edinburgh/jqueryconfig?action=raw" type="text/javascript"></script>
<script src="https://2009.igem.org/Team:Edinburgh/jqueryconfig?action=raw" type="text/javascript"></script>
-
 
-
<!-- lightbox -->
 
-
<script src="https://2009.igem.org/Team:Edinburgh/lightboxprototype?action=raw" type="text/javascript"></script>
 
-
<script src="https://2009.igem.org/Team:Edinburgh/lightboxscriptaculous?action=raw" type="text/javascript"></script>
 
-
<script src="https://2009.igem.org/Team:Edinburgh/lightbox?action=raw" type="text/javascript"></script>
 
<!--[if lt IE 7]>
<!--[if lt IE 7]>
Line 28: Line 26:
a:link {
a:link {
-
       color: #0a1735;
+
       color: #1b4a22;
-
       text-decoration:none;
+
       text-decoration:underline;
}
}
a:visited {
a:visited {
-
       color: #0a1735;
+
       color: #1b4a22;
-
       text-decoration:none;
+
       text-decoration:underline;
}
}
a:active {
a:active {
-
       color: #0a1735;
+
       color: #1b4a22;
-
       text-decoration:none;
+
       text-decoration:underline;
}
}
a:hover {
a:hover {
-
       color: #0a1735;
+
       color: #1b4a22;
-
       text-decoration:none;
+
       text-decoration:underline;
}
}
Line 113: Line 111:
float:right;
float:right;
background:#343742;
background:#343742;
-
width:624px;
+
width:564px;
height:25px;
height:25px;
}
}
Line 119: Line 117:
#contents {
#contents {
background:#505466;
background:#505466;
-
height:1000px;
+
height:3150px;
width:950px;
width:950px;
}
}
Line 136: Line 134:
.ih4 {
.ih4 {
       margin-top: 30px;
       margin-top: 30px;
-
margin-left:30px;
+
margin-left:20px;
}
}
Line 142: Line 140:
background:#F3EBD8;
background:#F3EBD8;
width:540px;
width:540px;
-
height:510px;
+
height:1050px;
float:left;
float:left;
margin-top:55px;
margin-top:55px;
Line 151: Line 149:
color:#302727;
color:#302727;
overflow:hidden;
overflow:hidden;
 +
        text-align:justify;
}
}
Line 182: Line 181:
background:#F3EBD8;
background:#F3EBD8;
width:540px;
width:540px;
-
height:230px;
+
height:1350px;
float:left;
float:left;
margin-top:55px;
margin-top:55px;
Line 191: Line 190:
color:#302727;
color:#302727;
overflow:hidden;
overflow:hidden;
-
+
        text-align:justify;
}
}
Line 208: Line 207:
#Edinburghfooter {
#Edinburghfooter {
-
height:20px;
+
height:210px;
width:948px;
width:948px;
background:#11131a;
background:#11131a;
Line 248: Line 247:
float:right;
float:right;
background:#523A3A;
background:#523A3A;
 +
}
 +
 +
#r {
 +
        font-size:11px;
 +
        font-family:Arial;
}
}
Line 255: Line 259:
<body>
<body>
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
<div id="references">
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh2.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
[1] Landmine monitor 2009. <font color="#932a0e">Landmine Monitor Fact Sheet. Landmines and children.</font>
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh3.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
<a href="http://www.lm.icbl.org/index.php/content/view/full/24160">http://www.lm.icbl.org/index.php/content/view/full/24160</a>
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh4.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
<br /><br />
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh5.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
[2] Thomas F. Jenkins, Daniel C. Leggett, Paul H. Miyares, Marianne E. Walsh, Thomas A. Ranney, James H. Cragin and Vivian George. 2001. <font color="#932a0e">Chemical signatures of TNT-filled land mines.</font> <i>Talanta.</i>  <font color="#932a0e">54</font> (3):501-513
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh6.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
<br /><br />
-
<a href="http://jvoliz.info/iGem/images/intext/edinburgh7.jpg" rel="lightbox[UoE]" title="University of Edinburgh"></a>
+
[3] Christopher E. French, Stephen Nicklin, and Neil C. Bruce. 1998 <font color="#932a0e">Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase.</font> <i>Applied and Environmental Microbiology</i>, <font color="#932a0e">64</font> (8): 2864-2868
 +
<br /><br />
 +
[4] Seth-Smith, H.M.B., Rosser, S.J., Basran, A., Travis, E.R., Dabbs, E.R., Nicklin, S. andBruce, N.C. 2002. <font color="#932a0e">Cloning, Sequencing and Characterization of the Hexahydro-1,3,5-trinitro-1,3,5-triazine Degradation Gene Cluster from <i>Rhodococcus rhodochrous</i>.</font> <i>Appl. Environ. Microbiol.</i> <font color="#932a0e">68</font>:4764-4771.
 +
<br /><br />
 +
[5] Smith, C.J. & Chalk, P.M. 1980. <font color="#932a0e">Gaseous nitrogen evolution during nitrification of ammonia fertilizer and nitrite transformation in soils.</font> <i>Soil Science Society of America Journal</i>, <font color="#932a0e">44</font>, 277–282.
 +
<br /><br />
 +
[6] Burns, L.C., Stevens, R.J. & Laughlin, R.J. 1995. <font color="#932a0e">Determination of the simultaneous production and consumption of soil nitrite using 15N.</font> <i>Soil Biology and Biochemistry</i>, <font color="#932a0e">27</font>, 839–844.
 +
<br /><br />
 +
[7] Van Cleemput, O. & Samater, A.H. 1996. <font color="#932a0e">Nitrite in soils: accumulation and role in the formation of gaseous N compounds.</font> <i>Fertilizer Research</i>, <font color="#932a0e">45</font>, 81–89.
 +
 
 +
</div>
 +
 
 +
<div id="references2">
 +
 
 +
Burlage, R., M. Hunt, J. DiBenedetto, and M. Maston. <font color="#932a0e">Locating TNT with BioReporter Bacteria.</font> <i>The University of Western Australia.</i> Web. 12 Oct. 2009. <a href="http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html">http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html</a>
 +
<br /><br />
 +
<font color="#932a0e">Method for detection of buried explosives using a biosensor - US Patent 5972638 Abstract.</font> <i>PatentStorm: U.S. Patents.</i> Web. 12 Oct. 2009. <a href="http://www.patentstorm.us/patents/5972638.html">http://www.patentstorm.us/patents/5972638.html</a>
 +
<br /><br />
 +
<font color="#932a0e">Reducing the Threat of War and Terrorism.</font> <i>Oak Ridge National Laboratory.</i> Web. 12 Oct. 2009. <a href="http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm">http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm</a>
 +
 
 +
</div>
-
<div id="loadme">
+
<div id="landmines">
-
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo tellus, aliquet sodales volutpat a, blandit vitae felis. Vivamus lorem odio, hendrerit quis facilisis non, tempus quis nunc. Nunc tincidunt luctus elementum. Vivamus in luctus purus. Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat, sapien odio aliquet neque, ac viverra nulla risus eget mauris. Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat, sapien odio aliquet neque, ac viverra nulla risus eget mauris.Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat.
+
To get more info about landmines and what they are visit<br /> <a href="https://2009.igem.org/Team:Edinburgh/projectmain/landmines">https://2009.igem.org/Team:Edinburgh/projectmain/landmines</a>
</div>
</div>
Line 270: Line 294:
         <div id="logo"></div>
         <div id="logo"></div>
<div id="head">  
<div id="head">  
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/6/6c/EdinburghHeadimg1.jpg" class="ih" border=0 /></a>
+
<a href="https://2009.igem.org/Team:Edinburgh/projectmain/motivation#map"><img src="https://static.igem.org/mediawiki/2009/6/6c/EdinburghHeadimg1.jpg" class="ih" border=0 /></a>
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/7/7d/EdinburghHeadimg3.jpg" border=0 class="ih2" /></a>
+
<a href="#why"><img src="https://static.igem.org/mediawiki/2009/7/7d/EdinburghHeadimg3.jpg" border=0 class="ih2" /></a>
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/7/74/EdinburghHeadimg2.JPG" class="ih3" border=0 /></a>
+
<a href="https://2009.igem.org/Team:Edinburgh/ethics%28summary%29"><img src="https://static.igem.org/mediawiki/2009/7/74/EdinburghHeadimg2.JPG" class="ih3" border=0 /></a>
-
         <a href="#"><img src="https://static.igem.org/mediawiki/2009/4/4c/EdinburghHeadimg4.jpg" class="ih4" border=0 /></a>
+
         <a href="https://2009.igem.org/Team:Edinburgh/minebustersmovie"><img src="https://static.igem.org/mediawiki/2009/4/4c/EdinburghHeadimg4.jpg" class="ih4" border=0 /></a>
</div>         
</div>         
<div id="gallery">
<div id="gallery">
          
          
-
  <img src="https://static.igem.org/mediawiki/2009/4/46/IMG_6774.JPG" width="940" height="380" style="margin-left:5px;margin-top:5px;">      
+
  <img src="https://static.igem.org/mediawiki/2009/4/46/IMG_6774.JPG" width="940" height="380" style="margin-left:5px;margin-top:5px;">  
-
  <img src="https://static.igem.org/mediawiki/2009/8/88/EdinburghSeeGallery.jpg" style="margin-left:7px;margin-top:10px;">
+
  <a href="https://2009.igem.org/Team:Edinburgh/team%28gallery%29"><img src="https://static.igem.org/mediawiki/2009/8/88/EdinburghSeeGallery.jpg" style="margin-left:7px;margin-top:10px;"></a>
-
<img src="https://static.igem.org/mediawiki/2009/1/16/EdinburghGallery1.jpg" style="margin-top:10px;margin-left:5px;">
+
-
<img src="https://static.igem.org/mediawiki/2009/e/e2/EdinburghGallery2.jpg" style="margin-left:1px;margin-top:10px;"">
+
-
<img src="https://static.igem.org/mediawiki/2009/0/06/EdinburghGallery3.jpg" style="margin-top:10px">
+
-
<img src="https://static.igem.org/mediawiki/2009/a/a2/EdinburghGallery4.jpg" style="margin-top:10px">
+
-
<img src="https://static.igem.org/mediawiki/2009/f/fe/EdinburghGallery5.jpg" style="margin-top:10px">
+
</div>
</div>
-
<div id="contents">
+
<div id="contents">
-
       
+
<div id="nav">
-
        <div id="nav">
+
<ul id="nav" class="dropdown dropdown-horizontal">
-
        <ul id="nav" class="dropdown dropdown-horizontal">
+
<li><a href="https://2009.igem.org/Team:Edinburgh">Home</a></li>
-
<li><a href="./">Home</a></li>
+
-
<li><a href="./" class="dir">Project</a>
+
-
<ul>
+
-
<li class="empty">Introduction</li>
+
-
<li><a href="./">Overall description</a></li>
+
-
<li><a href="./">Why bother?</a></li>
+
-
<li><a href="./">Why we differ?</a></li>
+
-
<li><a href="./">Project positioning</a></li>
+
-
<li><a href="./">Glance at future</a></li>
+
-
+
-
                        <li class="empty">Biology</li>
+
-
<li><a href="./">Introduction</a></li>
+
-
                        <li class="dir">Materials&Methods
+
-
<ul>
+
-
<li class="dir">Protocols
+
-
                                  <ul>
+
-
  <li><a href="./">Composite Biobricks</a></li>                 
+
-
                                  </ul>
+
-
                                </li>
+
-
+
-
                                <li class="dir">Primers
+
-
                                  <ul>
+
-
          <li><a href="./">TNT Primers</a></li>                 
+
-
                                  </ul>
+
-
                                </li>
+
-
</ul>
+
-
</li>
+
-
                        <li class="empty">Modelling</li>
+
  <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28overalldescription%29" class="dir">Biology</a>
-
                        <li class="empty">Real world application</li>
+
  <ul>
-
</ul>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28overalldescription%29">Overall Description and Design</a></li>
-
</li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28tntsensing%29">TNT-Sensing Pathway</a></li>
-
        <li><a href="./">Project related</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28nitritenitratesensing%29">Nitrite/Nitrate-Sensing Pathway</a></li>
-
        <li><a href="./">Team</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28biobricks%29">Biobrick Parts</a></li>
-
        <li><a href="./">Gallery</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28results%29">Results</a></li>
-
        <li><a href="./">Sponsors</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28solvedproblems%29">Problem Solving and Tips</a></li>
-
        <li><a href="./">Acknowledgements</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28materialsandmethods%29">Materials and Methods</a></li>
-
        <li><a href="./">Contacts</a></li>
+
    <li><a href="https://2009.igem.org/Team:Edinburgh/biology%28references%29">References</a></li>
-
        </ul>
+
  </ul>
 +
  </li>
 +
 
 +
  <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28overalldescription%29" class="dir">Modelling</a>
 +
  <ul>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28overalldescription%29">Overall Description</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28generegulatorynetwork%29">Gene Regulatory Network</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28reallifemodelling%29">Real Life Modelling</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/reallifeapplication%28scaleup%29">Scale Up</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28results%29">Results</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/modelling%28references%29">References</a></li>
 +
  </ul>
 +
  </li>
 +
 
 +
  <li><a href="https://2009.igem.org/Team:Edinburgh/ethics%28publicperception%29" class="dir">Underlying Philosophy</a>
 +
    <ul>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/ethics%28publicperception%29">Public Perception</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/ethics%28legislationissues%29">Legislation issues</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/ethics%28biosafety%29">Biosafety</a></li>
 +
    <li><a href="https://2009.igem.org/Team:Edinburgh/ethics%28summary%29">DEMOCS Card Game</a></li>
 +
    </ul>
 +
  </li>
 +
 
 +
  <li><a href="https://2009.igem.org/Team:Edinburgh/newinformatics%28introduction%29" class="dir">Informatics</a>
 +
    <ul>
 +
      <li><a href="https://2009.igem.org/Team:Edinburgh/newinformatics%28introduction%29">Introduction</a></li>
 +
      <li><a href="https://2009.igem.org/Team:Edinburgh/newinformatics%28globetutorial%29">Globe Tutorial</a></li>
 +
      <li><a href="https://2009.igem.org/Team:Edinburgh/newinformatics%28igemwikhacks%29">iGEM WIKI Hacks</a></li>
 +
      <li><a href="https://2009.igem.org/Team:Edinburgh/newinformatics%28conclusions%29">Blog Entry</a></li>
 +
    </ul>
 +
  </li>
 +
 
 +
  <li><a href="https://2009.igem.org/Team:Edinburgh/Notebook">Notebook</a></li>
 +
 
 +
  <li><a href="https://2009.igem.org/Team:Edinburgh/team%28teammembers%29" class="dir">Team</a>
 +
  <ul>
 +
<li><a href="https://2009.igem.org/Team:Edinburgh/team%28teammembers%29">Team Members</a></li>
 +
<li><a href="https://2009.igem.org/Team:Edinburgh/team%28advisors%29">Advisors</a></li>
 +
<li><a href="https://2009.igem.org/Team:Edinburgh/team%28supervisors%29">Supervisors</a></li>
 +
        <li><a href="https://2009.igem.org/Team:Edinburgh/team%28gallery%29">Gallery</a></li>
 +
        <li><a href="https://2009.igem.org/Team:Edinburgh/team%28contacts%29">Contacts</a></li>
 +
        <li><a href="https://2009.igem.org/Team:Edinburgh/team%28acknowledgements%29">Acknowledgements</a></li>
 +
  </ul>
 +
  </li>
 +
</ul>
         </div>
         </div>
-
<img src="" id=img1> </img>
+
<br /><br /><br /><br />
 +
<center><object width="625" height="344"><param name="movie" value="http://www.youtube.com/v/Y8axqKuItro&hl=ru&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><param name="wmode" value="opaque" /><embed src="http://www.youtube.com/v/Y8axqKuItro&hl=ru&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="625" height="344" wmode="opaque"></embed></object></center>
 +
<center><font style="color:white">Full version is out! Enjoy it <a href="https://2009.igem.org/Team:Edinburgh/minebustersmovie" style="color:white;text-decoration:underline;">here</a></font></center>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2009/8/8a/EdinburghLogo.jpg" id=img1> </img>
<div id="maincontent1">
<div id="maincontent1">
<div id=transbox> </div>
<div id=transbox> </div>
<br />
<br />
-
<b>iGEM PROJECT "TNT/RDX DETECTOR AND BIOREMEDIATOR" <a  class="load-local" href="#loadme" rel="#loadme" title="test">[Captain Planet, he's our hero!]</a></b>
+
<b>iGEM PROJECT "TNT/RDX Biosensor and Bioremediator" </a></b>
<br /><br />
<br /><br />
-
During our brainstorming we discussed a variety of topics which we found stimulating and interesting. Topics ranged from employing bacteria to desalinate water, to destroying deadly algal blooms, and making a synthetic vesicle construct. The latter would enable direct targeting of substances to specific tissues; something that could hopefully bring researchers a step closer to discovering a less invasive cure for diseases such as cancer and HIV.
+
In 2007, <b>5 426</b> new casualties were recorded from <a class="load-local" href="#landmines" rel="#landmines">landmine</a> explosions. 71% of these casualties were civilians. A further 46% of the civilian casualties were children<sup><a class="load-local" href="#references" rel="#references">[1]</a></sup>. This made us realise the need for the production of a cheap, safe and accurate method that can be applied in a big scale to help detect landmines. A synthetic organism could be just what is needed.
<br /><br />
<br /><br />
-
All these ideas are very exciting and compelling, and even though they were so diverse they had something in common. If successful, they could change the public perception of Synthetic Biology from being a frivolous endeavour by mad scientists, to a discipline with real life applications.
+
Even though landmines are buried under soil, there is leakage which indicates their imminent position with a chemical fingerprint. TNT-filled landmines produce three major source chemicals, namely 1,3-DNB, 2,4-DNT, and 2,4,6-TNT <sup><a class="load-local" href="#references" rel="#references">[2]</a></sup>. In addition, the natural degradation of explosive compounds, such as TNT, by bacterial enzymes produces nitrogen in the form of Nitrites<sup><a class="load-local" href="#references" rel="#references">[3]</a></sup>. Nitrites are also one of the by-products of the degradation of another explosive used in landmines, namely RDX. In the latter case, this can be achieved by the soil bacterium <i>Rhodococcus rhodochrous</i><sup><a class="load-local" href="#references" rel="#references">[4]</a></sup>.
<br /><br />
<br /><br />
-
A global initiative to develop Synthetic Biology for practical uses can greatly improve the quality of life of people not only directly, but also indirectly through improving the environment we live in.
+
<b>Our project is concerned in making a biosensor that would detect both the presence of TNT and nitrites/nitrates.</b>
<br /><br />
<br /><br />
-
Something else that these projects had in common was that we could not actually work on them. Reasons ranging from the lack of necessary equipment, a permit to work with mammalian cells, or modelling proved that the project was not industrially and economically feasible.
+
Natural nitrite concentration in soil tends to be very low (below 0.1 mg NO2-N /kg)<sup><a class="load-local" href="#references" rel="#references">[7]</a></sup>. Thereby the possibility of false positive results decreases. Our biosensor would also detect nitrates but these would need to be at a much higher concentration than nitrites to bring about a response.
<br /><br />
<br /><br />
-
Finally, we arrived at the ideal project! It was both feasible, within the time-scale of iGEM, and exciting! As ambitious as it may sound, we are going to engineer Escherichia coli that can detect landmines efficiently and safely by eliminating the risk of injury to military personnel and civilians alike. The bacteria will detect both TNT and nitrites (a by-product of explosive degradation), and produce different light outputs, depending on the stimulus. For more detailed information on our project please check this link.
+
The fact that excessive fertilisation with ammonium producing fertilizers such as urea can cause an increase in the presence of nitrites in the soil <sup><a class="load-local" href="#references" rel="#references">[5]</a></sup><sup><a class="load-local" href="#references" rel="#references">[6]</a></sup><sup><a class="load-local" href="#references" rel="#references">[7]</a></sup> gives the possibility that our device can be used in diverse fields of interest, from landmine identification (ranging from TNT landmines to RDX ones), to assaying extent of fertiliser induced nitrite/nitrate pollution.
-
<br />
+
<br /><br />
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/2/20/EdinburghEnter.JPG" style="margin-left:375px;" border="0" /></a>
+
Please read our detailed project description and part characterisation for further details. You might also want to visit our <a href="https://2009.igem.org/Team:Edinburgh/projectmain/motivation">motivation page</a> to see why our project might help lots of people.
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/6/65/EdinburghReadmore.JPG" style="margin-left:8px;" border="0"/></a>
+
-
</div>
+
-
<img src="" id=img2> </img>
+
<br /><br />
 +
<div id="r">
 +
<b>References</b>
 +
<br /><br />
 +
[1] Landmine monitor 2009. <b>Landmine Monitor Fact Sheet. Landmines and children.</b>
 +
<a href="http://www.lm.icbl.org/index.php/content/view/full/24160">http://www.lm.icbl.org/index.php/content/view/full/24160</a>
 +
<br /><br />
 +
[2] Thomas F. Jenkins, Daniel C. Leggett, Paul H. Miyares, Marianne E. Walsh, Thomas A. Ranney, James H. Cragin and Vivian George. 2001. <b>Chemical signatures of TNT-filled land mines.</b> <i>Talanta.</i>  <b>54</b> (3):501-513
 +
<br /><br />
 +
[3] Christopher E. French, Stephen Nicklin, and Neil C. Bruce. 1998 <b>Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase.</b> <i>Applied and Environmental Microbiology</i>, <b>64</b> (8): 2864-2868
 +
<br /><br />
 +
[4] Seth-Smith, H.M.B., Rosser, S.J., Basran, A., Travis, E.R., Dabbs, E.R., Nicklin, S. andBruce, N.C. 2002. <b>Cloning, Sequencing and Characterization of the Hexahydro-1,3,5-trinitro-1,3,5-triazine Degradation Gene Cluster from <i>Rhodococcus rhodochrous</i>.</b> <i>Appl. Environ. Microbiol.</i> <b>68</b>:4764-4771.
 +
<br /><br />
 +
[5] Smith, C.J. & Chalk, P.M. 1980. <b>Gaseous nitrogen evolution during nitrification of ammonia fertilizer and nitrite transformation in soils.</b> <i>Soil Science Society of America Journal</i>, <b>44</b>, 277–282.
 +
<br /><br />
 +
[6] Burns, L.C., Stevens, R.J. & Laughlin, R.J. 1995. <b>Determination of the simultaneous production and consumption of soil nitrite using 15N.</b> <i>Soil Biology and Biochemistry</i>, <b>27</b>, 839–844.
 +
<br /><br />
 +
[7] Van Cleemput, O. & Samater, A.H. 1996. <b>Nitrite in soils: accumulation and role in the formation of gaseous N compounds.</b> <i>Fertilizer Research</i>, <b>45</b>, 81–89.
 +
</div>
 +
</div>
 +
 +
<img src="https://static.igem.org/mediawiki/2009/2/26/EdinburghLogo2.jpg" id="img2"> </img>
<div id="maincontent2">
<div id="maincontent2">
<div id=transbox> </div>
<div id=transbox> </div>
-
<br />
 
-
<b>PROJECT RELATED SECTIONS</b>
 
-
        <br /><br />
 
-
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo tellus, aliquet sodales volutpat a, blandit vitae felis. Vivamus lorem odio, hendrerit quis facilisis non, tempus quis nunc. Nunc tincidunt luctus elementum. Vivamus in luctus purus. Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat, sapien odio aliquet neque, ac viverra nulla risus eget mauris. Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat, sapien odio aliquet neque, ac viverra nulla risus eget mauris.Cras massa massa, laoreet eget pulvinar ut, tempus sit amet dolor. Sed elementum, dolor eleifend ultricies consequat.
 
<br />
<br />
-
<a href="https://2009.igem.org/Team:Edinburgh/projectrelatedmain"><img src="https://static.igem.org/mediawiki/2009/2/20/EdinburghEnter.JPG" style="margin-left:375px;" border=0 /></a>
+
<b>Why we differ<a name="why">?</a></b>
-
<a href="#"><img src="https://static.igem.org/mediawiki/2009/6/65/EdinburghReadmore.JPG" style="margin-left:8px;" border=0 /></a>
+
<br /><br />
-
</div>
+
<b>Existing systems</b>
-
</div>
+
<br /><br />
-
<div id="Edinburghfooter"><center><font color="#11131a">iGem Team 2009 Edinburgh</font></center></div>
+
Biological systems for mine and particularly TNT detection have been described previously, the most prominent of which is the patented Microbial Mine Detection System (MMDS) developed by Dr Paul Burlage and the Oak Ridge National Laboratory. The MMDS is normally a bacterium able to detect and exhibit chemotaxis towards TNT and the vapours released as a result of its degradation, in particular nitrates and nitrites. The bacteria utilized at the Oak Ridge Laboratory are mainly the <i>Bacillus</i> or <i>Pseudomonas</i> species, such as <i>Pseudomonas putida</i>, which have been found to naturally exhibit growth towards a source of TNT degradation.  Although the MMDS patent states that the recombinant microorganism is able to directly detect TNT, it is likely that the bacteria do not exhibit chemotaxis towards TNT per se but rather the organism is sensitive to high levels of nitrate and nitrite.  The sensitive genes are in turn fused with a Green Fluorescent Protein (GFP) reporter gene, making it possible to visualize the fluorescent bacteria with the help of a UV illuminator. The MMDS has been field tested at a South Carolina site, where the system was able to locate all five of the hidden mine sites, showing the great potential of biological mine detection (Fig. 1).
 +
 
 +
<br /><br />
 +
<center><img src="https://static.igem.org/mediawiki/2009/0/05/WhyWeDifferFig1.jpg" width="500"></center>
 +
<center><i>Figure 1. An image showing a UV scan of a 3x4 metre field test area, demonstrating higher fluorescence levels around the mine site as well as plant material, possibly due to TNT being absorbed through the root system of surrounding plants. <a class="title" href="#" title="|Image from Burlage <i>et al</i>, 1999
 +
<a href='http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html' target='_blank'>http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html</a>|">Image source</a></sup></i></center>
 +
 
 +
<br /><br />
 +
 
 +
<b>Advantages of our system</b>
 +
 
 +
<br /><br />
 +
 
 +
The primary advantage of our system over the MMDS is the specificity of the TNT detection system.  Beside the nitrate and nitrite sensitivity, the MineBusters system (MBS) is able to exhibit high specificity to TNT with the help of a completely novel computationally designed TNT-specific promoter. Prior to this creation TNT specificity has not been found to occur in nature. Due to this the MBS is able to provide much more accurate readings of mine presence. With the help of the enzyme nitroreductase the MBS is also able to degrade TNT, providing further signal for the system. Most importantly, the MBS signals the presence of TNT as a combination of light and fluorescence-emitting systems, providing a <b>directly visible</b> outcome of various colours and in this way eliminating the need for any scanning or illumination equipment. We believe that on the basis of this our system has the potential to be much more accurate, easier and cheaper to operate than the existing one. We are confident that our system is a great candidate for a cheap, accessible and easy to use mine detection and eradication method.<a class="load-local" href="#references2" rel="#references2"></a>
 +
 
 +
<div id="r">
 +
<br /><br />
 +
<b>References</b>
 +
<br /><br />
 +
Burlage, R., M. Hunt, J. DiBenedetto, and M. Maston. <b>Locating TNT with BioReporter Bacteria.</b> <i>The University of Western Australia.</i> Web. 12 Oct. 2009. <a href="http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html">http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html</a>
 +
<br /><br />
 +
<b>Method for detection of buried explosives using a biosensor - US Patent 5972638 Abstract.</b> <i>PatentStorm: U.S. Patents.</i> Web. 12 Oct. 2009. <a href="http://www.patentstorm.us/patents/5972638.html">http://www.patentstorm.us/patents/5972638.html</a>
 +
<br /><br />
 +
<b>Reducing the Threat of War and Terrorism.</b> <i>Oak Ridge National Laboratory.</i> Web. 12 Oct. 2009. <a href="http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm">http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm</a>
 +
</div>
 +
</div>
 +
 
 +
<div style="float:right;margin-top:30px;margin-right:340px;">
 +
<a href="http://www3.clustrmaps.com/counter/maps.php?url=https://2009.igem.org/Team:Edinburgh" id="clustrMapsLink"><img src="http://www3.clustrmaps.com/counter/index2.php?url=https://2009.igem.org/Team:Edinburgh" style="border:0px;" alt="Locations of visitors to this page" title="Locations of visitors to this page" id="clustrMapsImg" onerror="this.onerror=null; this.src='http://www2.clustrmaps.com/images/clustrmaps-back-soon.jpg'; document.getElementById('clustrMapsLink').href='http://www2.clustrmaps.com';" />
 +
</a></div>
 +
</div>
 +
 
 +
 
 +
<div id="Edinburghfooter"><center><font color="#ffffff"><div style="margin-top:40px;">iGEM Team Edinburgh 2009 sends a huge <font color="red">THANK YOU</font> to our sponsors.
 +
<br /><br />
 +
<img src="https://static.igem.org/mediawiki/2009/2/27/EPSRCLogo.jpg">&nbsp;<img src="https://static.igem.org/mediawiki/2009/8/8f/EdnburghSponsorsLogo.gif" width="200">&nbsp;<img src="https://static.igem.org/mediawiki/2009/9/9a/Sulsa-Logo-CMYK.jpg" width="250" height="74">&nbsp;<img src="https://static.igem.org/mediawiki/2009/1/10/EdinburghLogoUoe.png" width="128" height="128" style="margin-top:-20px">
 +
<p>
 +
Best viewed in Firefox3/IE8. For an optimal experience upgrade to the latest versions of your browser and Flash player 10.
 +
 
 +
</div>
</div>
</div>
</body>
</body>
</html>
</html>

Latest revision as of 01:01, 22 October 2009



Visitor Map

[1] Landmine monitor 2009. Landmine Monitor Fact Sheet. Landmines and children. http://www.lm.icbl.org/index.php/content/view/full/24160

[2] Thomas F. Jenkins, Daniel C. Leggett, Paul H. Miyares, Marianne E. Walsh, Thomas A. Ranney, James H. Cragin and Vivian George. 2001. Chemical signatures of TNT-filled land mines. Talanta. 54 (3):501-513

[3] Christopher E. French, Stephen Nicklin, and Neil C. Bruce. 1998 Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Applied and Environmental Microbiology, 64 (8): 2864-2868

[4] Seth-Smith, H.M.B., Rosser, S.J., Basran, A., Travis, E.R., Dabbs, E.R., Nicklin, S. andBruce, N.C. 2002. Cloning, Sequencing and Characterization of the Hexahydro-1,3,5-trinitro-1,3,5-triazine Degradation Gene Cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68:4764-4771.

[5] Smith, C.J. & Chalk, P.M. 1980. Gaseous nitrogen evolution during nitrification of ammonia fertilizer and nitrite transformation in soils. Soil Science Society of America Journal, 44, 277–282.

[6] Burns, L.C., Stevens, R.J. & Laughlin, R.J. 1995. Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biology and Biochemistry, 27, 839–844.

[7] Van Cleemput, O. & Samater, A.H. 1996. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertilizer Research, 45, 81–89.
Burlage, R., M. Hunt, J. DiBenedetto, and M. Maston. Locating TNT with BioReporter Bacteria. The University of Western Australia. Web. 12 Oct. 2009. http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html

Method for detection of buried explosives using a biosensor - US Patent 5972638 Abstract. PatentStorm: U.S. Patents. Web. 12 Oct. 2009. http://www.patentstorm.us/patents/5972638.html

Reducing the Threat of War and Terrorism. Oak Ridge National Laboratory. Web. 12 Oct. 2009. http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm
To get more info about landmines and what they are visit
https://2009.igem.org/Team:Edinburgh/projectmain/landmines




Full version is out! Enjoy it here

iGEM PROJECT "TNT/RDX Biosensor and Bioremediator"

In 2007, 5 426 new casualties were recorded from landmine explosions. 71% of these casualties were civilians. A further 46% of the civilian casualties were children[1]. This made us realise the need for the production of a cheap, safe and accurate method that can be applied in a big scale to help detect landmines. A synthetic organism could be just what is needed.

Even though landmines are buried under soil, there is leakage which indicates their imminent position with a chemical fingerprint. TNT-filled landmines produce three major source chemicals, namely 1,3-DNB, 2,4-DNT, and 2,4,6-TNT [2]. In addition, the natural degradation of explosive compounds, such as TNT, by bacterial enzymes produces nitrogen in the form of Nitrites[3]. Nitrites are also one of the by-products of the degradation of another explosive used in landmines, namely RDX. In the latter case, this can be achieved by the soil bacterium Rhodococcus rhodochrous[4].

Our project is concerned in making a biosensor that would detect both the presence of TNT and nitrites/nitrates.

Natural nitrite concentration in soil tends to be very low (below 0.1 mg NO2-N /kg)[7]. Thereby the possibility of false positive results decreases. Our biosensor would also detect nitrates but these would need to be at a much higher concentration than nitrites to bring about a response.

The fact that excessive fertilisation with ammonium producing fertilizers such as urea can cause an increase in the presence of nitrites in the soil [5][6][7] gives the possibility that our device can be used in diverse fields of interest, from landmine identification (ranging from TNT landmines to RDX ones), to assaying extent of fertiliser induced nitrite/nitrate pollution.

Please read our detailed project description and part characterisation for further details. You might also want to visit our motivation page to see why our project might help lots of people.

References

[1] Landmine monitor 2009. Landmine Monitor Fact Sheet. Landmines and children. http://www.lm.icbl.org/index.php/content/view/full/24160

[2] Thomas F. Jenkins, Daniel C. Leggett, Paul H. Miyares, Marianne E. Walsh, Thomas A. Ranney, James H. Cragin and Vivian George. 2001. Chemical signatures of TNT-filled land mines. Talanta. 54 (3):501-513

[3] Christopher E. French, Stephen Nicklin, and Neil C. Bruce. 1998 Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase. Applied and Environmental Microbiology, 64 (8): 2864-2868

[4] Seth-Smith, H.M.B., Rosser, S.J., Basran, A., Travis, E.R., Dabbs, E.R., Nicklin, S. andBruce, N.C. 2002. Cloning, Sequencing and Characterization of the Hexahydro-1,3,5-trinitro-1,3,5-triazine Degradation Gene Cluster from Rhodococcus rhodochrous. Appl. Environ. Microbiol. 68:4764-4771.

[5] Smith, C.J. & Chalk, P.M. 1980. Gaseous nitrogen evolution during nitrification of ammonia fertilizer and nitrite transformation in soils. Soil Science Society of America Journal, 44, 277–282.

[6] Burns, L.C., Stevens, R.J. & Laughlin, R.J. 1995. Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biology and Biochemistry, 27, 839–844.

[7] Van Cleemput, O. & Samater, A.H. 1996. Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertilizer Research, 45, 81–89.

Why we differ?

Existing systems

Biological systems for mine and particularly TNT detection have been described previously, the most prominent of which is the patented Microbial Mine Detection System (MMDS) developed by Dr Paul Burlage and the Oak Ridge National Laboratory. The MMDS is normally a bacterium able to detect and exhibit chemotaxis towards TNT and the vapours released as a result of its degradation, in particular nitrates and nitrites. The bacteria utilized at the Oak Ridge Laboratory are mainly the Bacillus or Pseudomonas species, such as Pseudomonas putida, which have been found to naturally exhibit growth towards a source of TNT degradation. Although the MMDS patent states that the recombinant microorganism is able to directly detect TNT, it is likely that the bacteria do not exhibit chemotaxis towards TNT per se but rather the organism is sensitive to high levels of nitrate and nitrite. The sensitive genes are in turn fused with a Green Fluorescent Protein (GFP) reporter gene, making it possible to visualize the fluorescent bacteria with the help of a UV illuminator. The MMDS has been field tested at a South Carolina site, where the system was able to locate all five of the hidden mine sites, showing the great potential of biological mine detection (Fig. 1).

Figure 1. An image showing a UV scan of a 3x4 metre field test area, demonstrating higher fluorescence levels around the mine site as well as plant material, possibly due to TNT being absorbed through the root system of surrounding plants. Image source


Advantages of our system

The primary advantage of our system over the MMDS is the specificity of the TNT detection system. Beside the nitrate and nitrite sensitivity, the MineBusters system (MBS) is able to exhibit high specificity to TNT with the help of a completely novel computationally designed TNT-specific promoter. Prior to this creation TNT specificity has not been found to occur in nature. Due to this the MBS is able to provide much more accurate readings of mine presence. With the help of the enzyme nitroreductase the MBS is also able to degrade TNT, providing further signal for the system. Most importantly, the MBS signals the presence of TNT as a combination of light and fluorescence-emitting systems, providing a directly visible outcome of various colours and in this way eliminating the need for any scanning or illumination equipment. We believe that on the basis of this our system has the potential to be much more accurate, easier and cheaper to operate than the existing one. We are confident that our system is a great candidate for a cheap, accessible and easy to use mine detection and eradication method.


References

Burlage, R., M. Hunt, J. DiBenedetto, and M. Maston. Locating TNT with BioReporter Bacteria. The University of Western Australia. Web. 12 Oct. 2009. http://school.mech.uwa.edu.au/~jamest/demining/others/ornl/rsb.html

Method for detection of buried explosives using a biosensor - US Patent 5972638 Abstract. PatentStorm: U.S. Patents. Web. 12 Oct. 2009. http://www.patentstorm.us/patents/5972638.html

Reducing the Threat of War and Terrorism. Oak Ridge National Laboratory. Web. 12 Oct. 2009. http://www.ornl.gov/info/ornlreview/meas_tech/threat.htm
iGEM Team Edinburgh 2009 sends a huge THANK YOU to our sponsors.

   

Best viewed in Firefox3/IE8. For an optimal experience upgrade to the latest versions of your browser and Flash player 10.