Team:Imperial College London/M1/EnzymeDelivery

From 2009.igem.org

(Difference between revisions)
(Module 1: Enzyme Production)
(Module 1: Enzyme Production)
Line 33: Line 33:
<html><center><a href="https://2009.igem.org/Team:Imperial_College_London/M1"><img style="vertical-align:bottom;" width="20%" src="http://www.laurasmithart.com/smith/artwork/factory.jpg"></a><a href="https://2009.igem.org/Team:Imperial_College_London/M1/PeptideDelivery"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_geneticcircuit.png"></a><a  
<html><center><a href="https://2009.igem.org/Team:Imperial_College_London/M1"><img style="vertical-align:bottom;" width="20%" src="http://www.laurasmithart.com/smith/artwork/factory.jpg"></a><a href="https://2009.igem.org/Team:Imperial_College_London/M1/PeptideDelivery"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_geneticcircuit.png"></a><a  
-
href="https://2009.igem.org/Team:Imperial_College_London/M1/Genetic"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_geneticcircuit.png"></a><a  
+
href="https://2009.igem.org/Team:Imperial_College_London/M1/Genetic"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_geneticcircuit1.png"></a><a  
href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/M2/Wetlab"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Wetlabmainimage9.png"></a><html><a href="https://2009.igem.org/Team:Imperial_College_London/M2/Modelling"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage6.png"></a><center></html>
href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/M2/Wetlab"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Wetlabmainimage9.png"></a><html><a href="https://2009.igem.org/Team:Imperial_College_London/M2/Modelling"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage6.png"></a><center></html>
-
 
-
 
<html><table border="0" style="background-color:transparent;" width="100%">
<html><table border="0" style="background-color:transparent;" width="100%">
Line 54: Line 52:
<td width="1%"></td>
<td width="1%"></td>
</tr></table></html>
</tr></table></html>
-
<br><br><br><br>
+
<br>

Revision as of 11:45, 12 October 2009

Contents

II09 Thumb m1.png Module 1: Protein Production Overview

Enzyme Delivery

To carry out their functions, enzymes must maintain their precise three dimensional conformations. Many enzymes denature in the acidic conditions of the stomach rendering them inactive. Even enzymes that survive stomach acid must face an assalt from stomach proteases. For these two reasons, enzymes are well suited for encapsulation. The E.ncapsulator has been showcased with two important enzymes: phenylalanine hydroxylase (PAH) and cellulase.


Phenylalanine Hydroxylase (PAH)

PAH converts one amino acid (phenylalanine) into another (tyrosine). PAH is normally found in the liver, however individuals lacking this important enzyme suffer from the genetic disorder Phenylketonuria (PKU). Individuals with PKU must limit their consumption of phenylalanine otherwise its accumulation can result in problems with brain development, leading to progressive mental retardation, brain damage and seizures.

PKU is currently tested for by genetic screening newborn babies. There is no cure for this disease, and current treatments revolve around following a strict low protein diet.




  About PKU and current treatments.


Since PAH is usually found in the liver, it unsurprisingly lacks any natural resistance to proteases found in the intestine. In order to overcome this problem we introduced a mutation into the structure of PAH to increase its resistance to proteolytic degradation. The delivery of PAH by The Encapsulator is particularly relevant on two accounts. Firstly, it represents a landmark in metabolic subcontraction and secondly, it offers a treatment for a genetic disease.




  About PAH and how we modified it.



Mr. Gene   Geneart   Clontech   Giant Microbes