Team:Groningen/Project Plan/Construction

From 2009.igem.org

Revision as of 07:51, 31 July 2009 by Jaspervdg (Talk | contribs)

[http://2009.igem.org/Team:Groningen http://2009.igem.org/wiki/images/f/f1/Igemhomelogo.png]
Risk List Tools and Documentation Inception Elaboration Construction Transition
1 2 1 2 1 2 3 1 2
apr. 20 may 18 jun. 01 27 28 29 30 31 32 33 34 35 okt. 15

This is the iteration plan for the Construction iteration(s). See [http://www.upedu.org/upedu/process/artifact/ar_itpln.htm the UPEDU artifact description] for information on what this is and what it contains (including a template).

Milestone

These are the major [http://www.upedu.org/upedu/process/itrwkfls/ms_ioc.htm milestone objectives] for the Construction phase:

  • TODO Our wonderful buoyant, metal filtering bacteria should be alive and kicking!
  • TODO (?) The lab/plan cloning strategy should be fully worked out at the end of the phase to reflect our final decisions on which parts/protocols/procedures/? to use. (I think this roughly corresponds to the Implementation Model in UPEDU. --Jaspervdg 11:09, 23 June 2009 (UTC))
  • TODO The Iteration plan for the transition phase completed and reviewed.
  • TODO (?) Design Model (and all constituent artifacts) updated with new design elements identified during the completion of all requirements. (I think this can roughly be seen as fleshing out all the device designs and parts, or in other words: making sure The Project is up-to-date. --Jaspervdg 11:09, 23 June 2009 (UTC))
  • TODO More?

Resources

Note that we're opting to do this for the entire phase instead of each iteration as in UPEDU as this seems more natural (our needs change little over the course of one phase). --Jaspervdg 11:01, 23 June 2009 (UTC)
[Resources needed for the phase — material, human, financial, and so on.]

Construction 1

Overall objective:

  • The basic model should be ready
  • The seperate part of the labwork should be known and working or almost working
  • modellers should know which parameters they need so the labworkers can prepare providing these
  • The tickets and hostel should be booked

Week 27

June 30 - July 5 :

  • Analyst
  • Configuration Manager
  • Designer
  • Implementer
    • Have genes as BioBricks in the vector, together with all DNA elements needed for expression (RBS, term etc).
    • Work on the final parts should have been started.
    • Try to find protocols for the characterization, to check feasibility.
    • Keep record of the labwork on the Notebook site
    • GVP (Michael and Paul)
      1. Test insert length of gvp cluster (E-genR-X-RBS-PART-S-P in vector , Figure 1)
      2. (Needed?) Silence restrictionsites in gvp cluster by PCR (BamHI, XhoI, BglII --> used in other BBa standard assemblies)and remove repeat in gvpL.
      3. Add the terminator to the construct
      4. If needed add promoter (constitutive promoter --> ) to do initial phenotype testing.
    • Metal transporters (Jolanda, SJ)
      1. Transform E. coli with construct (HmtA first, get GlpF either by ordering or by genome PCR. Then order primers + pre/suffix and RBS in prefix).
      2. Test insert length.
      3. Silence restrictionsites in HtmA by PCR (2x PstI) and add BioBrick pre/suffix.
      4. Clone the terminator in to the construct.
    • Metal accumulation (Wilfred, Nienke)
      1. Decide which Metallothioneins will be used.
      2. Transform E. coli with construct / synthetic gene.
      3. Test insert length.
      4. (If needed) Silence restrictionsites in gvp cluster by PCR.
      5. Add BioBrick pre/suffix by PCR.
      6. Clone the terminator in to the construct.
    • Vectors (Sven, Frans (Modelling aswell?)):
      1. Transform E. coli TOP10 with pSB3K3 and E. coli DB3.1 with pSB1AC3.
        1. pSB3K3 contains a p15A ORI and Kan resistance.
        2. pSB1AC3 contains Amp + Cam resistance markers, a ccdB death gene and a pMB1 ORI.
      2. Add different promoters to the vectors:
        1. Inducible are: pBAD-AraC in pSB2K3 and the Lac promoter in pSB1A2.
        2. Constitutive are: High expected expression yield, and Low expected expression yield, Lac promoter with mutated operator . For these promoter sequences are too small, oligo's have to be ordered + BBa pre/suffix !!without RBS!!
        3. Metal sentitive are possibly copA (order oligo's) and ??
          1. Clone in such a way that they are nicely -10 / -30 in front of the start codon.
      3. Test functionality of the promoters by cloning GFP + RBS + Terminator behind the promoter (BioBrick??).
  • Integrator
  • Modeller
  • Project Manager
    • Have both modellers and labworkers up and running.
    • Labworkers have choosen the parts and tested those. The bouyancy, metal intake and accumulation should be tested and working seperatly.
    • Have a start-up model and make sure the labworkers know which parameters the modellers need and can or already have provided these.
    • Have choosen a tester, a "testplan" should have been made, the necessary equipment should be at least ordered.
    • the tickets and hostel should be booked, so plans for jamboree or thereafter should be known roughly.
  • Public Relations Officer
    • Get in contact with papers, magazines and other media for possible publications.
    • Keep in contact with other teams on progress during the summer.
  • Tester

Week 28

July 6 - July 12 :

  • Analyst
  • Configuration Manager
  • Designer
  • Implementer
  • Integrator
  • Modeller
    • TODO Make a detailed list of things that should be measured in relation to buoyancy, indicating how well a guess we already have. For example (pretty much everything we'd love to have as a time series):
      • Densities (of cells).
      • Volume fraction of gas vesicles (needs to be determined how best to estimate this), to check the relationship between the density of the rest of the cell and the presence of gas vesicles.
      • (Relative) promotor strengths? (We should be able to relate this to gvp/transporter expression in some way!)
    • DONE Reality check for buoyancy with arsenic.
    • Model accumulation of arsenic in E. coli.
      • DONE How well does ArsR(+fusion protein) bind to its binding site.
      • TODO How well does ArsR(+fusion protein) bind to arsenic.
      • DONE Reaction rate(s) for binding, unbinding, production and degradation of ArsR(+fusion protein)?
  • Project Manager
  • Public Relations Officer
  • Tester

Week 29

July 13 - July 19 :

GVP (1pers):

  • Place three different constituive promotors with low, medium, and high activity in front of GVP-cluster
DONE cutting the vector with promotor sequence resulted in a fragment of about 50bp and was difficult to locate on 1% agarose gel
DONE gel purification of cut vector with GVP resulted in such a low concentration (4.3 ng/μL), it was not usable in the next step (ligation)
DONE next option is cutting out GVP-cluster, and ligate it into the promotor vector (other way around).

The cutting and ligation was one of the more serious issues of Melbourne 2007 team, and might give us the same problems to keep in mind

TODO check if transformation/ligation has worked
  • Isolate new plasmids of GVP and the three promotors to continu work
DONE grow new cultures of each from the glycerol stocks
DONE determine concentration with nanodrop
  • Create (and test) variants of GVP vector with/without Ori+resistance between the E and X sites???
TODO get in contact with Kloosterman for protocols for working with small fragments
TODO isolate cut promotors from gel

Metal transporters (2 pers):

  • PCR HmtA???
  • PCR GlpF???

Metal accumulation (2 pers):

  • ArsR fusion???

Vectors (1pers):

  • Two variants of promotor + RBS (one with RBS from genome and one with RBS from GVP).???

All (8pers):

  • List for -80°C and -20°C storage
DONE list for -80°C storage can be found here, but needs finishing
DONE storage in -20°C is kept up to data by the persons working in the lab, and excel sheats are made for on the door
  • Cloning strategy (make a plan up to the final assembly)
TODO what are the target vectors going to be, and which genes are going to be grouped together
TODO what is still missing
TODO are there options to be investigated
  • Integrator
  • Modeller
    • TODO Make a detailed list of things that should be measured, indicating how well a guess we already have. For example (pretty much everything we'd love to have as a time series):
      • Concentrations (of metals).
      • Concentrations of bound metals vs. unbound metals in cells?
      • (Relative) promotor strengths? (We should be able to relate this to gvp/transporter expression in some way!)
    • TODO Model import/export of arsenic in E. coli (use surface area per volume of cells + number of transporters per surface as measure?).
      • DONE Find diffusion speed (if nonzero). (Most likely does not diffuse through the cell membrane.)
      • DONE What transporters in and out of the cell are there in our E. coli.
      • TODO How much transporters in and out of the cell are there in our E. coli.
      • TODO How much are we adding?
      • DONE "Reaction" rate(s) for import (GlpF).
      • TODO "Reaction" rate(s) for export (ArsB).
  • Project Manager
  • Public Relations Officer
  • Write press release TODO

Construction 2

Overall objective:

Tasks per role:

  • Analyst
  • Configuration Manager
  • Designer
  • Implementer and Tester
    • GVP (1 pers):
      1. Initial testing of phenotype, growth rates E. coli
      2. Clone gvp from BBa_J61035 to the high / low copy number vector
      3. (If the vectors do not already contain one) Clone gvp in vector with different promoters; high, moderate, low expression.
    • Metal transporters (2 pers):
      1. Initial testing of phenotype, growth rates E. coli.
      2. Clone HtmA to the high / low copy number vector.
      3. (If the vectors do not already contain one) Clone gvp in vector with different promoters; high, moderate, low expression (see GVP). --> do not use constitutive promoter before a combined construct with a metal accumulator has been made!
    • Metal accumulation (2 pers):
      1. Initial testing of phenotype, growth rates E. coli.
      2. Clone the gene to the high / low copy number vector.
      3. (If the vectors do not already contain one) Clone gvp in vector with different promoters; high, moderate, low expression (see GVP).
    • Vectors (1pers):
      1. Add different promoters to the vectors--> in such a way that they are nicely -10 / -30 in front of the start codon.
      2. Test functionality of the promoters by cloning GFP + RBS + Terminator behind the promoter.
  • Integrator
  • Modeller
  • Project Manager
  • Public Relations Officer

Week 30

July 20 - July 26 :

GVP (1 pers):

  • Place promotors [http://partsregistry.org/wiki/index.php/Part:BBa_J23109 BBa_J23109], [http://partsregistry.org/wiki/index.php/Part:BBa_J23100 BBa_J23100], and [http://partsregistry.org/wiki/index.php/Part:BBa_J23106 BBa_J23106] in front of [http://partsregistry.org/wiki/index.php/Part:BBa_I750016 GVP] in either the plasmid of the promotor or the GVP-cluster
TODO make a cloning strategy for best assembly, and get familiar with procedure
  • Gel purification has to be obtimised for the standard plasmid purification kit, or a specialised kit has to be ordered TODO
  • Primers/Oligo's for three metal induced promotors should arive
TODO select vector to ligate fragment in for boibrick storage
TODO ligate parts directly infront of GVP-cluster
  • Expression of GVP genes in E.coli TOP10 cells test strategy
TODO start can be test in 50mL tubes and compare "floating" of cells with and without plasmid
TODO the test tube of 1 meter in lenght can be a good follow up test if floatation is observed
  • Clone GVP-cluster from vector [http://partsregistry.org/wiki/index.php/Part:BBa_J61035 BBa_J61035] to the high / low copy number vector
TODO deside together with persons from vector group which vectors they have selected and prepared
TODO clone GVP-cluster + RBS + Promotor (Terminator) in new vectors
  • Improving GVP biobrick compared to Melbourne part
TODO how can the insert of 40bp repeat be removed from gvpL?
TODO remove the RBS which is infront of gvp-cluster to add own RBS
TODO the original DNA cluster, including gvpA, should be obtained
TODO make primers for gvpA and obtain the gene as biobrick (can be used to replace gvpB and see its affect)
  • Make contact with other iGEM teams with related projects
TODO formulate questions for [http://parts.mit.edu/igem07/index.php/Melbourne/Lab_GV_Notebook Melbourne] iGEM 2007 team, and get in contact with their supervisor(s): [http://www.biochemistry.unimelb.edu.au/research/res_gooley.htm%7CProfessor Paul Gooley] and [http://www.biochemistry.unimelb.edu.au/research/res_cheng.htm%7CProfessor Heung-Chin Cheng]
TODO Newcastle University is working on metal uptake and storage by B. subtilis, try to get in contact

Metal transporters (2 pers):

  • PCR the HmtA gene with "old" primers
TODO test forward HmtA primer
TODO Order new HmtA primers in order to remove the extra EcoR1 site
  • If GlpF primers are in, PCR the GlpF gene, from the genome of e.coli,in two PCR reactions.
TODO first PCR with forward and mutation reverse and second the reverse with the mutation forward.

Metal accumulation (2 pers):

Vectors (1pers):


All (8pers):

  • Cloning strategy (make a plan up to the final assembly)
TODO what are the target vectors going to be, and which genes are going to be grouped together
TODO what is still missing
TODO are there options to be investigated

Week 31

July 27 - August 2 :

GVP (1 pers):

  • Place promotors [http://partsregistry.org/wiki/index.php/Part:BBa_J23109 BBa_J23109], [http://partsregistry.org/wiki/index.php/Part:BBa_J23100 BBa_J23100], and [http://partsregistry.org/wiki/index.php/Part:BBa_J23106 BBa_J23106] in front of [http://partsregistry.org/wiki/index.php/Part:BBa_I750016 GVP] in either the plasmid of the promotor or the GVP-cluster
TODO make a cloning strategy for best assembly, and get familiar with procedure
  • Gel purification has to be obtimised for the standard plasmid purification kit, or a specialised kit has to be ordered TODO
  • Primers/Oligo's for three metal induced promotors should arive
TODO select vector to ligate fragment in for boibrick storage
TODO ligate parts directly infront of GVP-cluster
  • Expression of GVP genes in E.coli TOP10 cells test strategy
TODO start can be test in 50mL tubes and compare "floating" of cells with and without plasmid
TODO the test tube of 1 meter in lenght can be a good follow up test if floatation is observed
  • Clone GVP-cluster from vector [http://partsregistry.org/wiki/index.php/Part:BBa_J61035 BBa_J61035] to the high / low copy number vector
TODO deside together with persons from vector group which vectors they have selected and prepared
TODO clone GVP-cluster + RBS + Promotor (Terminator) in new vectors
  • Improving GVP biobrick compared to Melbourne part
TODO how can the insert of 40bp repeat be removed from gvpL?
TODO the original DNA cluster, including gvpA, should be obtained
TODO make primers for gvpA and obtain the gene as biobrick (can be used to replace gvpB and see its affect)
  • Make contact with other iGEM teams with related projects
TODO formulate questions for [http://parts.mit.edu/igem07/index.php/Melbourne/Lab_GV_Notebook Melbourne] iGEM 2007 team, and get in contact with their supervisor(s): [http://www.biochemistry.unimelb.edu.au/research/res_gooley.htm%7CProfessor Paul Gooley] and [http://www.biochemistry.unimelb.edu.au/research/res_cheng.htm%7CProfessor Heung-Chin Cheng]
TODO Newcastle University is working on metal uptake and storage by B. subtilis, try to get in contact

Metal transporters (2 pers):

Metal accumulation (2 pers):

Vectors (1pers):

Week 32

August 3 - August 9 :

Construction 3

Overall objective:

Tasks per role:

  • Analyst
  • Configuration Manager
  • Designer
  • Implementer and Tester
    • GVP (1 pers):
      1. Test phenotype, growth rates E. coli again.
      2. Transform E. coli with both vectors
      3. Check compatibility of gvp expression and metal transport / accumulation system expression in E. coli by transforming the organism with both vectors and select on two antibiotics (compatible selection markers and promoters)
      4. Make final buoyancy tests.
    • Metal transporters (2 pers):
      1. Test phenotype, growth rates E. coli again.
      2. Transform E. coli with both vectors.
      3. Check compatibility of gvp expression and metal transport / accumulation system expression in E. coli by transforming the organism with both vectors and select on two antibiotics (compatible selection markers and promoters)
      4. Make final metal importing tests.
    • Metal accumulation (2 pers):
      1. Test phenotype, growth rates E. coli again.
      2. Transform E. coli with both vectors.
      3. Check compatibility of gvp expression and metal transport / accumulation system expression in E. coli by transforming the organism with both vectors and select on two antibiotics (compatible selection markers and promoters)
      4. Make final metal accumulation tests.
  • Integrator
  • Modeller
  • Project Manager
  • Public Relations Officer

Week 33

August 10 - August 16 :

Week 34

August 17 - August 23 :

Week 35

August 24 - August 30 :