Team:Washington-Software

From 2009.igem.org

(Difference between revisions)
Line 36: Line 36:
<h1> Abstract </h1>
<h1> Abstract </h1>
-
<h5><big>'''LegoRoboBricks for Automated BioBrick Assembly'''</big></h5>
+
<h5>'''LegoRoboBricks for Automated BioBrick Assembly'''</h4>
-
Commercial Liquid Handling Systems are extremely expensive, and are typically beyond the reach of the average molecular biologist interested in performing high throughput methods.  To address this problem, our project consists of the design and implementation of a liquid handling system built from commonly accessible Legos.  We demonstrate a proof-of-principle use for this system to perform BioBrick assembly by transferring colored dye solutions on a 96-well plate.   
+
<h5>Commercial Liquid Handling Systems are extremely expensive, and are typically beyond the reach of the average molecular biologist interested in performing high throughput methods.  To address this problem, our project consists of the design and implementation of a liquid handling system built from commonly accessible Legos.  We demonstrate a proof-of-principle use for this system to perform BioBrick assembly by transferring colored dye solutions on a 96-well plate.   
-
We introduce a new concept called LegoRoboBrick.  The liquid handling system is build by designing and implementing 3 LegoRoboBrick modular components: ALPHA (Automated Lego Pipette Head Assembly), BETA (BioBrick Environmental Testing Apparatus), and PHI (Pneumatic Handling Interface).  We will demonstrate that the same BioBrick assembly software can run on multiple plug-and-play LegoRoboBrick instances with different physical dimensions and geometric configurations. The modular design of LegoRoboBricks allows easy extension of new laboratory functionalities in the future.
+
We introduce a new concept called LegoRoboBrick.  The liquid handling system is build by designing and implementing 3 LegoRoboBrick modular components: ALPHA (Automated Lego Pipette Head Assembly), BETA (BioBrick Environmental Testing Apparatus), and PHI (Pneumatic Handling Interface).  We will demonstrate that the same BioBrick assembly software can run on multiple plug-and-play LegoRoboBrick instances with different physical dimensions and geometric configurations. The modular design of LegoRoboBricks allows easy extension of new laboratory functionalities in the future.</h5>
|[[Image:legorobobricks.jpg|400px]]
|[[Image:legorobobricks.jpg|400px]]
|}
|}

Revision as of 16:15, 10 October 2009

WashingtonColorSeal-21-clip.gif Home Team Project Modeling Notebook

Abstract

LegoRoboBricks for Automated BioBrick Assembly</h4> <h5>Commercial Liquid Handling Systems are extremely expensive, and are typically beyond the reach of the average molecular biologist interested in performing high throughput methods. To address this problem, our project consists of the design and implementation of a liquid handling system built from commonly accessible Legos. We demonstrate a proof-of-principle use for this system to perform BioBrick assembly by transferring colored dye solutions on a 96-well plate. We introduce a new concept called LegoRoboBrick. The liquid handling system is build by designing and implementing 3 LegoRoboBrick modular components: ALPHA (Automated Lego Pipette Head Assembly), BETA (BioBrick Environmental Testing Apparatus), and PHI (Pneumatic Handling Interface). We will demonstrate that the same BioBrick assembly software can run on multiple plug-and-play LegoRoboBrick instances with different physical dimensions and geometric configurations. The modular design of LegoRoboBricks allows easy extension of new laboratory functionalities in the future.
400px

Check list

Home: the whole picture of the robot, abstract, project goals

Team: photos of everyone, group picture

project: photos of the robot from different angles,video source from you tube diagrams (powerpoint etc), more explanation on each module (story...background...)

Modeling:

Notebook: notes that has been taken, including the codes Timeline(?)



This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have a team description page, a project abstract, a complete project description, and a lab notebook. PLEASE keep all of your pages within your teams namespace.

Example.jpg