Team:UC Davis/wiring pH sensor
From 2009.igem.org
Wiring the pH
sensor into our system:
Th pH sensor:
ChvG/ChvI is a two-component system and a suspected pH sensor. ChvG is the histidine kinase and ChvI is its cognate response regulator(2). Together they are believed to sense extracellular pH between 5.5 to 7 and relay this signal to regulate the expression of key virulence-related genes(2).
In our design, we used this two-component system from Agrobacterium tumefaciens to regulate the expression of select target genes.
Possibility of Cross-Talk:
Bacteria have numerous related two-component systems based on kinase/response-regulation(5). For instance, the A. tumefaciens genome is known to contain at least 25 two-component pathways (2). Therefore, there are possibilities of cross-talk between some genes present in E. coli that have the same mechanism as the ChvI/ChvG system. In fact, there is evidence supporting that ChvI can complement a PhoB deletion in E. coli. (3) Therefore it is highly likely that there is a possibility of cross-talk between our new sensory systems elements, present in E. coli. Many protein-protein interactions are not fully understood (5), which makes this project more challenging but very interesting.
Click on the specific part or
interaction for more information.
Parts: ChvG, ChvI, PhoR, PhoB
Interactions: ChvG---> ChvI , PhoR---> ChvI , PhoR--->PhoB ,ChvI--->PhoA
Th pH sensor:
ChvG/ChvI is a two-component system and a suspected pH sensor. ChvG is the histidine kinase and ChvI is its cognate response regulator(2). Together they are believed to sense extracellular pH between 5.5 to 7 and relay this signal to regulate the expression of key virulence-related genes(2).
In our design, we used this two-component system from Agrobacterium tumefaciens to regulate the expression of select target genes.
Possibility of Cross-Talk:
Bacteria have numerous related two-component systems based on kinase/response-regulation(5). For instance, the A. tumefaciens genome is known to contain at least 25 two-component pathways (2). Therefore, there are possibilities of cross-talk between some genes present in E. coli that have the same mechanism as the ChvI/ChvG system. In fact, there is evidence supporting that ChvI can complement a PhoB deletion in E. coli. (3) Therefore it is highly likely that there is a possibility of cross-talk between our new sensory systems elements, present in E. coli. Many protein-protein interactions are not fully understood (5), which makes this project more challenging but very interesting.
Parts: ChvG, ChvI, PhoR, PhoB
Interactions: ChvG---> ChvI , PhoR---> ChvI , PhoR--->PhoB ,ChvI--->PhoA