Team:Imperial College London/M2/EncapsulationRationale
From 2009.igem.org
JamesField (Talk | contribs) (→The need for encapsulation:) |
JamesField (Talk | contribs) (→Phase 1:) |
||
Line 7: | Line 7: | ||
{{Imperial/09/Division}} | {{Imperial/09/Division}} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
==<b>Phase 2:</b>== | ==<b>Phase 2:</b>== |
Revision as of 21:44, 19 October 2009
Phase 2:
We hacked E.coli’s acid resistance module in three places to achieve the production of a safe acid resistant capsule.
Acid Resistant Polymer – Colanic acid: E.coli naturally produces a harmless acid–resistant polymer known as colanic acid. Colanic acid is a polymer of glucose, galactose and glucuronic acid. By tapping into the pathway that initiates colanic acid biosynthesis, we can turn on its production via the modulation of a transcription factor encoded by a gene called RcsB.
Safety – Biofilm prevention:
In nature, colanic acid acts as a binding agent between individual cells over which a biofilm can be formed. While colanic acid itself is harmless, biofilm formation is associated with a number of virulence factors. To prevent biofilm formation from occurring, we have tapped into a second pathway such that our cells become locked into colanic acid production. The gene responsible for preventing biofilm formation is a transcription factor encoded by a gene called YgiV.
Microencapsulation – Colanic acid tethering:
In nature, colanic acid is associated with but not attached to the cell surface. To facilitate whole cell encapsulation, we have modified a third pathway to fix the colanic acid to the surface of the cell. This involves the over–production of an enzyme called Rfal.
Module 2 - Encapsulation