Team:NYMU-Taipei/Project/Receptor/CD4
From 2009.igem.org
Blackrabbit (Talk | contribs) (New page: NYMU Wt-rece.png {{:Team:NYMU-Taipei/Header}} ==Motivation== Virus have a high mutation rate, so our immune system can not always detect mutated viruses. But vi...) |
(→Receptors used to catch HIV) |
||
Line 13: | Line 13: | ||
==Receptors used to catch HIV== | ==Receptors used to catch HIV== | ||
Previous study indicate that HIV absorb T cell and macrophage by their envelope glycoprotein[1,2], and insert a fusion peptide into target cell to change their membrane structure. Changing of membrane structures will help the fusion between the HIV envelope and the target cell membrane. The CD4 receptor of macrophage and T cells are the main target of HIV. HIV attaches onto human cells using their gp120 protein. The binding causes a shift of conformation on gp120 that allows the connection between gp120 and the co-receptor CCR5 or CXCR4[1,2].<br> | Previous study indicate that HIV absorb T cell and macrophage by their envelope glycoprotein[1,2], and insert a fusion peptide into target cell to change their membrane structure. Changing of membrane structures will help the fusion between the HIV envelope and the target cell membrane. The CD4 receptor of macrophage and T cells are the main target of HIV. HIV attaches onto human cells using their gp120 protein. The binding causes a shift of conformation on gp120 that allows the connection between gp120 and the co-receptor CCR5 or CXCR4[1,2].<br> | ||
- | [[ | + | [[image:HIV absorb cd4 and ccr5.png]]<br> |
figure from website:http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Cobain/geneprotein.html | figure from website:http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Cobain/geneprotein.html | ||
<br> | <br> |
Latest revision as of 20:26, 21 October 2009
Home | Project Overview: | Chassis | Receptors | Removal | Experiments and Parts | F.A.Q | About Us |
Contents |
Motivation
Virus have a high mutation rate, so our immune system can not always detect mutated viruses. But virus capsid proteins have some specific binding proteins that viruses use to enter into human cells. There are some highly conserved regions on the virus proteins, since mutations of these regions will never be worth it for the viruses since the viruses will not be able to enter human cells and survive.
In our ViroCatcher, we want to express human receptors that interact with HIV. In addition, we have to check the folding of the target receptors, because our receptors from human cells would have to express in bacteria. Eventually, to make contact with receptors of HIV, we have to anchor the receptors on the membrane of our ViroCatcher.
Goal
Use the receptors on human cells that bind to HIV, and put them on our ViroCatcher to catch HIV.
Receptors used to catch HIV
Previous study indicate that HIV absorb T cell and macrophage by their envelope glycoprotein[1,2], and insert a fusion peptide into target cell to change their membrane structure. Changing of membrane structures will help the fusion between the HIV envelope and the target cell membrane. The CD4 receptor of macrophage and T cells are the main target of HIV. HIV attaches onto human cells using their gp120 protein. The binding causes a shift of conformation on gp120 that allows the connection between gp120 and the co-receptor CCR5 or CXCR4[1,2].
figure from website:http://www.bio.davidson.edu/Courses/Molbio/MolStudents/spring2003/Cobain/geneprotein.html
We express the two receptors CD4 and CCR5 on our ViroCatcher membrane and use autotransporter system to anchor the receptors on the membrane of our ViroCatcher.
- [http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi?REQUEST=CCDS&ORGANISM=0&BUILDS=CURRENTBUILDS&DATA=CCDS8562.1 CD4 sequence]
1 atgaaccggg gagtcccttt taggcacttg cttctggtgc tgcaactggc gctcctccca 61 gcagccactc agggaaagaa agtggtgctg ggcaaaaaag gggatacagt ggaactgacc 121 tgtacagctt cccagaagaa gagcatacaa ttccactgga aaaactccaa ccagataaag 181 attctgggaa atcagggctc cttcttaact aaaggtccat ccaagctgaa tgatcgcgct 241 gactcaagaa gaagcctttg ggaccaagga aactttcccc tgatcatcaa gaatcttaag 301 atagaagact cagatactta catctgtgaa gtggaggacc agaaggagga ggtgcaattg 361 ctagtgttcg gattgactgc caactctgac acccacctgc ttcaggggca gagcctgacc 421 ctgaccttgg agagcccccc tggtagtagc ccctcagtgc aatgtaggag tccaaggggt 481 aaaaacatac agggggggaa gaccctctcc gtgtctcagc tggagctcca ggatagtggc 541 acctggacat gcactgtctt gcagaaccag aagaaggtgg agttcaaaat agacatcgtg 601 gtgctagctt tccagaaggc ctccagcata gtctataaga aagaggggga acaggtggag 661 ttctccttcc cactcgcctt tacagttgaa aagctgacgg gcagtggcga gctgtggtgg 721 caggcggaga gggcttcctc ctccaagtct tggatcacct ttgacctgaa gaacaaggaa 781 gtgtctgtaa aacgggttac ccaggaccct aagctccaga tgggcaagaa gctcccgctc 841 cacctcaccc tgccccaggc cttgcctcag tatgctggct ctggaaacct caccctggcc 901 cttgaagcga aaacaggaaa gttgcatcag gaagtgaacc tggtggtgat gagagccact 961 cagctccaga aaaatttgac ctgtgaggtg tggggaccca cctcccctaa gctgatgctg 1021 agtttgaaac tggagaacaa ggaggcaaag gtctcgaagc gggagaaggc ggtgtgggtg 1081 ctgaaccctg aggcggggat gtggcagtgt ctgctgagtg actcgggaca ggtcctgctg 1141 gaatccaaca tcaaggttct gcccacatgg tccaccccgg tgcagccaat ggccctgatt 1201 gtgctggggg gcgtcgccgg cctcctgctt ttcattgggc taggcatctt cttctgtgtc 1261 aggtgccggc accgaaggcg ccaagcagag cggatgtctc agatcaagag actcctcagt 1321 gagaagaaga cctgccagtg tcctcaccgg tttcagaaga catgtagccc catttga
outer primer (forward) contain ompA sticky tag
GCACTCGTCCGGACAAC(56deg, 65%, 17bp)ATGAACCGGGGAGTCC(54deg, 63%, 16bp)
outer primer (reverse)
ctgcagcggccgctactagta AATGGGGCTACATGTCTTCT 55deg, 45%, 20bp
- [http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi?REQUEST=CCDS&ORGANISM=0&BUILDS=CURRENTBUILDS&DATA=CCDS2739.1 CCR5 sequence]
1 atggattatc aagtgtcaag tccaatctat gacatcaatt attatacatc ggagccctgc 61 caaaaaatca atgtgaagca aatcgcagcc cgcctcctgc ctccgctcta ctcactggtg 121 ttcatctttg gttttgtggg caacatgctg gtcatcctca tcctgataaa ctgcaaaagg 181 ctgaagagca tgactgacat ctacctgctc aacctggcca tctctgacct gtttttcctt 241 cttactgtcc ccttctgggc tcactatgct gccgcccagt gggactttgg aaatacaatg 301 tgtcaactct tgacagggct ctattttata ggcttcttct ctggaatctt cttcatcatc 361 ctcctgacaa tcgataggta cctggctgtc gtccatgctg tgtttgcttt aaaagccagg 421 acggtcacct ttggggtggt gacaagtgtg atcacttggg tggtggctgt gtttgcgtct 481 ctcccaggaa tcatctttac cagatctcaa aaagaaggtc ttcattacac ctgcagctct 541 cattttccat acagtcagta tcaattctgg aagaatttcc agacattaaa gatagtcatc 601 ttggggctgg tcctgccgct gcttgtcatg gtcatctgct actcgggaat cctaaaaact 661 ctgcttcggt gtcgaaatga gaagaagagg cacagggctg tgaggcttat cttcaccatc 721 atgattgttt attttctctt ctgggctccc tacaacattg tccttctcct gaacaccttc 781 caggaattct ttggcctgaa taattgcagt agctctaaca ggttggacca agctatgcag 841 gtgacagaga ctcttgggat gacgcactgc tgcatcaacc ccatcatcta tgcctttgtc 901 ggggagaagt tcagaaacta cctcttagtc ttcttccaaa agcacattgc caaacgcttc 961 tgcaaatgct gttctatttt ccagcaagag gctcccgagc gagcaagctc agtttacacc 1021 cgatccactg gggagcagga aatatctgtg ggcttgtga
outer primer (forward) contain ompA sticky tag
GCACTCGTCCGGACAAC(56deg, 65%, 17bp)ATGGATTATCAAGTGTCAAGTCC (54deg, 39%, 23bp)
outer primer (reverse)
ctgcagcggccgctactagta CAAGCCCACAGATATTTCCTG 55deg, 48%, 21bp
inner primer1
CATTACACCTGtAGCTCTCATT 53deg, 41%, 22bp AATGAGAGCTaCAGGTGTAATG
inner primer2
TTCCAGGAgTTCTTTGGC 53deg, 50%, 18bp GCCAAAGAAcTCCTGGAA
Circuit design
References
1. Chan DC, Kim PS: HIV entry and its inhibition. Cell 1998, 93(5):681-684.
2. Wyatt R, Sodroski J: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998, 280(5371):1884-1888.