Team:Calgary/Lab/Quorum Sensing

From 2009.igem.org

(Difference between revisions)
 
(3 intermediate revisions not shown)
Line 135: Line 135:
BONNIE BASSLER
BONNIE BASSLER
</div>
</div>
 +
Bonnie Bassler is a professor of molecular biology at Princeton University. She pioneered and has made significant advances in the field Quorum Sensing, or cell-to-cell communication. Specifically, she is an expert with <i>V. harveyi</i> and has provided our team with the essential genes from this species of bacteria to implement the AI-2 signalling system in <i>E. Coli</i>: LuxPQ, LuxOU, LuxO mutants and the qrr4 promoter. She also provided our team with the KT1144 reporter strain that will help in testing our reporter circuit. She has been awarded with the MacArthur Fellowship, for an individual with "exceptional merit and promise for continued and enhanced creative work". Please watch the video as she delivers a riveting TED talk about Quorum Sensing. We watched this video numerous times simply because it gives a tremendous overview of Quorum Sensing.
</td>
</td>
Line 165: Line 166:
<td width="750" bgcolor="#414141" valign="top">
<td width="750" bgcolor="#414141" valign="top">
<br>
<br>
-
<div class="heading">HAWAIIAN BOBTAILED SQUID & <i>Vibrio harveyi</i></div>
+
<div class="heading">HAWAIIAN BOBTAILED SQUID & <i>Vibrio fischeri</i></div>
<div class="desc">
<div class="desc">
 +
<table width="750" border="0" bgcolor="#414141" cellspacing=0>
 +
<tr>
 +
<td bgcolor="#414141">
 +
<br>
 +
<div class="desc">
 +
<object width="480" height="295"><param name="movie" value="http://www.youtube.com/v/zd4BmJZ2xFA&hl=en&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/zd4BmJZ2xFA&hl=en&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="295"></embed></object>
 +
</div>
 +
</td>
 +
 +
<td width="10" bgcolor="#414141">
 +
</td>
 +
 +
<td bgcolor="#414141">
 +
<center>
 +
<div class="desc">
 +
info
 +
</div>
 +
</center>
 +
</td>
 +
 +
 +
</tr>
 +
</table>
</div>
</div>
</td>
</td>

Latest revision as of 03:39, 22 October 2009

University of Calgary

UNIVERSITY OF CALGARY



LAB INDEX

QUORUM SENSING AND OUR PROJECT
Bacteria are able to communicate by producing and releasing chemical signal molecules termed autoinducers in a process called Quorum Sensing (QS) (1). An increase in local population density of bacteria results in the accumulation of autoinducers until a minimal threshold concentration is reached, whereby bacteria are able to organize their behaviour by coordinating their gene expression. Such coordinated behaviour includes virulence induction, swarming, biofilm formation and genetic competence (2).

QS was first observed in the bioluminescent bacteria Vibrio fischeri (3), where light was emitted only at high population densities, but could be induced in low population densities with the presence of an extracellular substance, later identified as the autoinducer N-acylhomoserine (AHL) (4).

Further research in QS led to the discovery of the universal signaling molecule (5) autoinducer-2 (AI-2), which has been characterized in the gram-negative, bioluminescent marine bacterium Vibrio harveyi (1). AI-2 binds to the periplasmic protein LuxP forming an AI-2-LuxP complex that interacts with LuxQ, a membrane bound histidine kinase (6). At low population density corresponding to low AI-2 levels, this AI-2 signalling acts as a phosphorylation cascade, resulting in the phosphorylated form of luxO. Phospho-LuxO complexes with transcription factor σ54 to activate the transcription of the genes encoding five regulatory small RNAs (sRNAs) termed Qrr1-5 (7). These sRNAs bind and destabilize the mRNA of luxR (8) , a transcriptional activator of the luciferase operon luxCDABE (9). As the mRNA of luxR is degraded in the presence of low levels of AI-2 and low cell density, V. harveyi will not express bioluminescence.

In high population densities and thus high AI-2 levels, LuxQ changes from a kinase to a phosphotase, and the result is unphosphorylated LuxO (1). There is no complexing with σ54, and no production of sRNAs. This leads to unblocked luxR mRNA allowing its translation that drives the expression of bioluminescence via luciferase.

We, the University of Calgary's 2009 iGEM team, have engineered this Vibrio harveyi AI-2 signaling system in Escherichia coli using the molecular cloning techniques used in the International Genetically Engineered Machines (iGEM) competition. This system is coupled with the expression of aiiA, a gene that encodes an AHL-degrading enzyme partaking in quorum quenching, allowing us to target biofilm maintenance.

References
(1)Waters, C.M. & Bassler, B.L.. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319-346 (2005).
(2)Hardman, A.M., Stewart, G.S. & Williams P. Quorum sensing and the cell-cell communication dependent regulation of gene expression in pathogenic and non-pathogenic bacteria. Antonie van Leeuwenhoek. 74, 199-210 (1998).
(3)Nealson, K. H., Platt, T. & Hastings, W. Cellular Control of the synthesis and activity of the bacterial bioluminescent system. J. Bacteriol. 104, 313-322 (1970).
(4)Eberhard, A., Burlingame, A.L., Kenyon, G.L., Nealson, K.H. & Oppenheimer, N.J. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 20, 2444-2449 (1981).
(5)Sun, J., Daniel, R., Wagner-Dobler I. & Zeng, A.P. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways, BMC Evol. Biol. 4, 36 (2004).
(6)Bassler, B.L., Wright, M., Silverman, M.R. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13, 273-286 (1994).
(7)Lilley, B.N. & Bassler, B.L. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol. Microbiol. 36, 940–54 (2000).
(8)Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S. & Bassler, B.L.The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004)
(9)Swartzman, E., Silverman, M. & Meighen, E.A. The luxR gene product of Vibrio harveyi is a transcriptional activator of the lux promoter. J. Bacteriol. 174, 7490–7493 (1992)


BONNIE BASSLER
Bonnie Bassler is a professor of molecular biology at Princeton University. She pioneered and has made significant advances in the field Quorum Sensing, or cell-to-cell communication. Specifically, she is an expert with V. harveyi and has provided our team with the essential genes from this species of bacteria to implement the AI-2 signalling system in E. Coli: LuxPQ, LuxOU, LuxO mutants and the qrr4 promoter. She also provided our team with the KT1144 reporter strain that will help in testing our reporter circuit. She has been awarded with the MacArthur Fellowship, for an individual with "exceptional merit and promise for continued and enhanced creative work". Please watch the video as she delivers a riveting TED talk about Quorum Sensing. We watched this video numerous times simply because it gives a tremendous overview of Quorum Sensing.


HAWAIIAN BOBTAILED SQUID & Vibrio fischeri

info