Team:Imperial College London/Temporal Control/Chemical Induction

From 2009.igem.org

(Difference between revisions)
(Chemical Induction)
Line 10: Line 10:
In our system, the protein of interest is synthesised at the start of the production process in a phase known as <b> Module 1 </b>. Importantly, the time at which <b>Module 1</b> starts is controlled by the addition of a chemical inducer called IPTG. This means that <b>Module 1</b> can be initiated when there is the optimum ratio of cells to remaining nutrients.  
In our system, the protein of interest is synthesised at the start of the production process in a phase known as <b> Module 1 </b>. Importantly, the time at which <b>Module 1</b> starts is controlled by the addition of a chemical inducer called IPTG. This means that <b>Module 1</b> can be initiated when there is the optimum ratio of cells to remaining nutrients.  
 +
<html><center><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Chemical_Induction"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage1.png"></a><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Autoinduction"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage2.png"></a><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Thermoinduction "><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage3.png"></a><a href="https://2009.igem.org/Team:Imperial_College_London/Drylab"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage4.png"></a><a href="https://2009.igem.org/Team:Imperial_College_London/Wetlab"><img style="vertical-align:bottom;" width="20%" src="http://i691.photobucket.com/albums/vv271/dk806/II09_Drylabmainimage5.png"></a></center></html>
 +
 +
<html><table border="0" style="background-color:transparent;" width="100%">
 +
<tr><td width="0%">&nbsp;</td>
 +
<td width="20%"><center><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Chemical_Induction"><b>Chemical Induction</b></a></center></td>
 +
<td width="20%"><center><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Autoinduction"><b>Autoinduction</b></a></center></td>
 +
<td width="20%"><center><a href="https://2009.igem.org/Team:Imperial_College_London/Temporal_Control/Thermoinduction"><b>Thermoinduction</b></a></center></td>
 +
<td width="20%"><center><a href="https://2009.igem.org/Team:Imperial_College_London/Drylab"><b>Modelling</b></a></center></td>
 +
<td width="20%"><center><a href="https://2009.igem.org/Team:Imperial_College_London/Wetlab"><b>Results</b></a></center></td>
 +
<td width="1%"></td>
 +
</tr></table></html>
 +
<br>
{{Imperial/09/TemplateBottom}}
{{Imperial/09/TemplateBottom}}

Revision as of 17:34, 6 October 2009

Chemical Induction

From the Module 1 genetic circuit, in the absence of IPTG in the system, the LacI repressor inhibits production of the protein of interest. When IPTG is added in we start the production of the drug of interest:

II09 NoIPTG yesIPTG.jpg


In a batch culture system, a defined volume of media is innoculated with a small number of cells. If the cells are being used for protein production, it is vital that synthesis is initiated at the right time. The optimum time for protein production is when there are a large number of rapidly dividing cells in a nutrient rich media.

In our system, the protein of interest is synthesised at the start of the production process in a phase known as Module 1 . Importantly, the time at which Module 1 starts is controlled by the addition of a chemical inducer called IPTG. This means that Module 1 can be initiated when there is the optimum ratio of cells to remaining nutrients.

 
Chemical Induction
Autoinduction
Thermoinduction
Modelling
Results

Mr. Gene   Geneart   Clontech   Giant Microbes