Team:British Columbia/Jammer

From 2009.igem.org

(Difference between revisions)
(Results: Images added)
 
(14 intermediate revisions not shown)
Line 1: Line 1:
{{Template:UBCiGEM2009_menu_home}}
{{Template:UBCiGEM2009_menu_home}}
-
=Jammer: Endogenous, Modular RNA Knockdown=
 
-
Preliminary Results for Immediate Release ­ 11:48pm October 14, 2009
+
=Traffic Light Switcher: the Modular and Endogenous Jammer=
-
Alex Ng and Amelia Hardjasa
+
==Overview==
-
==Summary of Results ==
+
[[Image:E_coli_Traffic_Light_Jammer_General.png|thumb|center|450px|A general explanation of the Jammer component of the ''E. coli'' Traffic Light Biosensor.]]
-
BW27783 cells containing Jammer plasmids grown overnight show GFP_LVA
+
-
knockdown in the presence of arabinose. Although these results are very
+
-
preliminary (e.g.  without replicates), they suggest that arabinose is
+
-
inducing the production of an anti-sense transcript that causes knockdown
+
-
of GFP_LVA expression.
+
-
==Methods==
+
<BR>
-
BW27783 cells with the following plasmids were inoculated and grown
+
-
overnight in 15mL LB with or without 0.5% arabinose: Constitutive GFP_LVA,
+
-
Jammer-100, Jammer-101, Jammer-105, and Empty Cells (no plasmids).  FACS
+
-
data was taken at approximately 18 hours and 24 hours post-inoculation.
+
-
18-hour data is shown.  ODs were taken at 24 hours to verify similar
+
-
grown.  Jammer constructs: Terminator- Constitutive Promoter (J23100
+
-
or J23101 or J23105)-RBS-GFP_LVA-Pbad_reverse- Terminator.  *Note that
+
-
J23100 Jammer has not been sequence verified, only length and fluorescence
+
-
verified.
+
-
==Results==
+
The traffic light requires a component that switches off a light that was previously turned on. To date, the registry does not have a method to easily turn off genes independently from a forward promoter (e.g. inducible and repressible promoters) or biological chassis (e.g. Dicer). We designed a modular, endogenous method of repression using a reverse antisense promoter. Our proof-of-concept jammer <partinfo>k206010</partinfo> uses pBAD in the reverse direction along with various terminators to knockdown GFP expression.
-
<html>
+
-
<img src="https://static.igem.org/mediawiki/2009/3/39/British_Columbia_JammerData_J23100.jpg" height=300>
+
-
</html>
+
-
Astonishingly, Jammer-100 cells grown in presence of arabinose show
+
We did the following:
-
fluorescence almost identical to cells without GFP_LVA plasmids, implying
+
#Assembled a reverse pBAD (<partinfo>J44002</partinfo>) with terminator (<partinfo>B0014</partinfo>) into a GFP generator
-
near total knockdown levels of GFP_LVA fluorescence.  Note that plasmid
+
#Tested the first version by quantifying GFP expression to determine if knockdown exists
-
is not sequence verified; however, failed assemblies should only be
+
#Redeveloped the jammer by adding a forward terminator and optimizing terminator position
-
missing the reverse-strand terminator.
+
#Retested the second version and succeeded
 +
#Submitted BioBrick to Registry
-
<html>
+
==Results & Quantification==
-
<img src="https://static.igem.org/mediawiki/2009/2/29/British_Columbia_JammerData_J23101.jpg" height=300>
+
-
</html>
+
-
Cells containing Jammer-101 plasmids show 101 knockdown in presense of
+
In our first test, we assembled a constitutively expressed GFP part with the first version of the jammer <partinfo>K206008</partinfo> and quantified using FACS.
-
arabinose.  Uninduced populations show two peaks of GFP_LVA expression,
+
-
one at constitutive levels and another at no fluorescence.  It is possible
+
-
that weak transcription of the promoter and rapid LVA degradation tags
+
-
may contribute to non-fluorescent cells.
+
-
<html>
+
[[Image:E_coli_Traffic_Light_J23100_Jammer_Incomplete.png|thumb|center|500px|The forward terminator is necessary for proper functioning of the Jammer. Arabinose induction shows no significant effects on GFP expression.]]
-
<img src="https://static.igem.org/mediawiki/2009/0/0f/British_Columbia_JammerData_J23105.jpg" height=300>
+
-
</html>
+
-
Cells containing Jammer-105 plasmids show no apparent GFP_LVA
+
It appeared our first test did not work as expected. After redeveloping the jammer, by adding terminators and repositioning them, we tested the device again.
-
fluorescence.  It is surprising that arabinose-induced cells have
+
-
measureable fluorescence.
+
 +
[[Image:E_coli_Traffic_Light_J23100-Jammer_Complete.png|thumb|center|500px|J23100-Jammer works as expected. Arabinose induces near-total knockdown of GFP expression.]]
-
<html>
+
Here, we have shown that the Jammer works as expected, by inducing a near total knockdown of GFP expression. The forward terminator is necessary for its function, and although the biological mechanism is not clear at this time, we have proposed possible mechanisms below.
-
<img src="https://static.igem.org/mediawiki/2009/a/a7/British_Columbia_JammerData_opticaldensity.jpg" height=300>
+
-
</html>
+
-
OD data do not suggest significant differences in viability from potential
+
==Possible Biological Mechanisms of Jammer==
-
toxicity in LB containing 0.5% arabinose, implying observed knockdowns
+
-
are unlikely to result from dead cells with dysfunctional translational
+
-
machinery for GFP_LVA production.
+
-
==Conclusions==
+
[[Image:E_coli_Traffic_Light_Jammer_Mechanism.png|thumb|center|500px]]
-
FACS data of three independent constructs and ODs taken together strongly
+
 
-
suggest an observable knockdown of GFP_LVA from arabinose induction.
+
We proposed that, due to the reliance of a reverse promoter and two flanking terminators in the forward and reverse directions, that the hybridization of sense and anti-sense transcripts are inhibiting GFP expression. It is possible that because the double-stranded RNA is fully complementary, its complementary binding is particularly effective at protecting the transcript from translation. The necessity of the forward terminator suggests that a correctly sized antisense transcript significantly helps knockdown. Another mechanism that is possible suggests that the double-stranded RNA is being targeted for degradation, which would reduce GFP expression. Lastly, the reverse direction of RNA-dependent RNA polymerases may be colliding with the forward direction polymerase that transcribes GFP. However, this mechanism is unlikely to be as strong as the former or other possible explanations because, without the forward terminator, GFP expression is not inhibited.
-
Although these results are very preliminary and require additional
+
 
-
verification, they are exciting results that an endogenous, modular method
+
==BioBrick Submission==
-
of knockdown at the RNA level is possible, thus potentially enabling
+
Here, you can find the working jammer <partinfo>K206010</partinfo>. For use by other teams looking for a modular, easily repressible jammer, use <partinfo>K206008</partinfo> along with a forward terminator such as <partinfo>B0014</partinfo>. An experimental weaker jammer is <partinfo>K206011</partinfo>.
-
elegant and rapid constructs of auto-regulation at the RNA-level that
+
-
is independent of the biological chassis.
+

Latest revision as of 03:48, 22 October 2009

Contents

Traffic Light Switcher: the Modular and Endogenous Jammer

Overview

A general explanation of the Jammer component of the E. coli Traffic Light Biosensor.


The traffic light requires a component that switches off a light that was previously turned on. To date, the registry does not have a method to easily turn off genes independently from a forward promoter (e.g. inducible and repressible promoters) or biological chassis (e.g. Dicer). We designed a modular, endogenous method of repression using a reverse antisense promoter. Our proof-of-concept jammer uses pBAD in the reverse direction along with various terminators to knockdown GFP expression.

We did the following:

  1. Assembled a reverse pBAD () with terminator () into a GFP generator
  2. Tested the first version by quantifying GFP expression to determine if knockdown exists
  3. Redeveloped the jammer by adding a forward terminator and optimizing terminator position
  4. Retested the second version and succeeded
  5. Submitted BioBrick to Registry

Results & Quantification

In our first test, we assembled a constitutively expressed GFP part with the first version of the jammer and quantified using FACS.

The forward terminator is necessary for proper functioning of the Jammer. Arabinose induction shows no significant effects on GFP expression.

It appeared our first test did not work as expected. After redeveloping the jammer, by adding terminators and repositioning them, we tested the device again.

J23100-Jammer works as expected. Arabinose induces near-total knockdown of GFP expression.

Here, we have shown that the Jammer works as expected, by inducing a near total knockdown of GFP expression. The forward terminator is necessary for its function, and although the biological mechanism is not clear at this time, we have proposed possible mechanisms below.

Possible Biological Mechanisms of Jammer

E coli Traffic Light Jammer Mechanism.png

We proposed that, due to the reliance of a reverse promoter and two flanking terminators in the forward and reverse directions, that the hybridization of sense and anti-sense transcripts are inhibiting GFP expression. It is possible that because the double-stranded RNA is fully complementary, its complementary binding is particularly effective at protecting the transcript from translation. The necessity of the forward terminator suggests that a correctly sized antisense transcript significantly helps knockdown. Another mechanism that is possible suggests that the double-stranded RNA is being targeted for degradation, which would reduce GFP expression. Lastly, the reverse direction of RNA-dependent RNA polymerases may be colliding with the forward direction polymerase that transcribes GFP. However, this mechanism is unlikely to be as strong as the former or other possible explanations because, without the forward terminator, GFP expression is not inhibited.

BioBrick Submission

Here, you can find the working jammer . For use by other teams looking for a modular, easily repressible jammer, use along with a forward terminator such as . An experimental weaker jammer is .