Team:British Columbia

From 2009.igem.org

(Difference between revisions)
(E.coli Traffic Light: A flexible, modular, and transparent system for multi-level assessment of variable inputs.')
 
(40 intermediate revisions not shown)
Line 1: Line 1:
 +
{{Template:UBCiGEM2009_menu_home}}
 +
=<font color="#00CC66">E.coli</font> <font color="#FFCC66">Traffic</font> <font color="#FF0000">Light</font>: <br> A ''flexible'', ''modular'', and ''transparent'' system for multi-level assessment of variable inputs.'=
 +
Biosensors have a diverse variety of real-world functions, ranging from measuring blood glucose levels in diabetes patients to assessing environmental contamination of trace toxins. The majority of these sensors are highly specific for a single input, and their outputs often require specialized equipment such as surface plasmon resonance chips.
-
{|align="justify"
+
Our project aims to create a biosensor that recognizes a specific target and alters its output fluorescence from green, to yellow, to red as a function of concentration up to critical levels (hence, a biological "traffic light").
-
|Formed in March 2009, this iGEM team is the first to enter from UBC, and hopes to do its alma mater proud.
+
-
|[[Image:iGEMFinalGoldDNA-logo.jpg|200x200px|right]]
+
-
|-
+
-
|
+
-
''We have selected two project tracks:
+
-
  * To manipulate the sensitivity of a whole-cell biosensor
+
-
  * To implement a logic gate-based decision system within the biosensor
+
-
The general scheme is to prototype the manipulations using an arabinose sensor coupled to a GFP reporter. ''
+
-
|[[Image:Team.png|right|frame|Your team picture]]
+
-
|-
+
-
|
+
-
|align="center"|[[Team:British_Columbia | Team Example]]
+
-
|}
+
-
<!--- The Mission, Experiments --->
 
-
(''Or you can choose different headings. But you must have a team page, a project page, and a notebook page.'')
+
Click the colours of the traffic light to learn about its different subparts!
 +
<!-- [[Image:BritishColumbia-Trafficlight.png|center|400px]] -->
 +
 
 +
<html>
 +
 
 +
 
 +
<img src="/wiki/images/thumb/f/fc/E_coli_Traffic_Light_General.png/950px-E_coli_Traffic_Light_General.png" width=950 usemap="#trafficlight">
 +
 
 +
<map name="trafficlight">
 +
<area shape="circle"
 +
      coords="774,121,54"
 +
      alt="Sensors: This links to the pBAD promoters that sense the arabinose."
 +
      title="Sensors: This links to the pBAD promoters that sense the arabinose."
 +
      href="/Team:British_Columbia/pBAD"
 +
/>
 +
 
 +
<area shape="circle"
 +
      coords="775,236,55"
 +
      alt="Lock and Key: this controls when the colors are produced"
 +
      title="Lock and Key: this controls when the colors are produced"
 +
      href="/Team:British_Columbia/LockandKey"
 +
/>
 +
 
 +
<area shape="circle"
 +
      coords="774,350,54"
 +
      alt="The Jammer: this mRNA sequence blocks the key from opening the lock."
 +
      title="The Jammer: this mRNA sequence blocks the key from opening the lock."
 +
      href="/Team:British_Columbia/Jammer"
 +
/>
 +
 
 +
</map>
 +
</html>
 +
 
 +
 
 +
 
 +
 
 +
<!--
 +
[[Image:E_coli_Traffic_Light_General.png|thumb|center|950px|Schematic black-box representation of the E. coli Biosensor that detects various concentration inputs and color outputs. The idea is discrete analog outputs based on a user-specified threshold for each range of concentration.]]
 +
-->

Latest revision as of 03:58, 22 October 2009

E.coli Traffic Light:
A flexible, modular, and transparent system for multi-level assessment of variable inputs.'

Biosensors have a diverse variety of real-world functions, ranging from measuring blood glucose levels in diabetes patients to assessing environmental contamination of trace toxins. The majority of these sensors are highly specific for a single input, and their outputs often require specialized equipment such as surface plasmon resonance chips.

Our project aims to create a biosensor that recognizes a specific target and alters its output fluorescence from green, to yellow, to red as a function of concentration up to critical levels (hence, a biological "traffic light").


Click the colours of the traffic light to learn about its different subparts!

Sensors: This links to the pBAD promoters that sense the arabinose. Lock and Key: this controls when the colors are produced The Jammer: this mRNA sequence blocks the key from opening the lock.