Team:Virginia Commonwealth

From 2009.igem.org

(Difference between revisions)
 
(11 intermediate revisions not shown)
Line 1: Line 1:
<div id="header">{{Template:Team:Virginia_Commonwealth/Templates/Header}}</div>
<div id="header">{{Template:Team:Virginia_Commonwealth/Templates/Header}}</div>
-
 
+
<br />
-
 
+
<center>
-
<html>
+
===Promoter design, characterization and consequences===
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
+
</center>
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
+
-
This is a template page. READ THESE INSTRUCTIONS.
+
-
</div>
+
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
+
-
</div>
+
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
+
-
You <strong>MUST</strong> have a team description page, a project abstract, a complete project description, and a lab notebook.  PLEASE keep all of your pages within your teams namespace. 
+
-
</div>
+
-
</div>
+
-
</html>
+
-
 
+
-
<!-- *** End of the alert box *** -->
+
-
 
+
{|align="justify"
{|align="justify"
-
|Our team is interested in developing foundational measurement technology for the quantitative analysis and characterization of engineered biological systemsAs an example, we hope to implement basic, well-characterized parts (e.g., promoters, enhancers, RBSs, terminators) within a novel metabolic pathway for the synthesis and secretion of a valuable small molecule.
+
|The generation of well-characterized genetic parts is a prerequisite for the rational design and construction of reliable genetically-encoded devices and systems.  However, most publicly available parts (including those in the Registry) remain largely uncharacterized.  Therefore, we propose a minimal measurement standard for the quantitative characterization of one of the most frequently used parts, promotersThis approach uses both mRNA and protein measurements to provide a tractable and universal analysis of relevant promoter characteristics.  In an effort to elucidate promoter design principles, we have also designed and characterized new promoter and enhancer sequences. Our goal is to contribute to the advancement of fundamental synthetic biology by evaluating the performance of new and existing promoters and enhancers, which may serve as a model for describing other basic parts such as ribosome-binding sites and transcriptional terminators.
|
|
|-
|-
-
|
 
-
''Tell us more about your project.  Give us background.  Use this is the abstract of your project.  Be descriptive but concise (1-2 paragraphs)''
 
-
|
 
-
|-
 
-
|
 
-
|
 
|}
|}
-
 
+
<br />
-
<!--- The Mission, Experiments --->
+
[[Image:VCU_2009_iGEM.jpg|thumb|center|930px|Left to right: Kevin Bussing, Dr. Stephen Fong (primary advisor), Clay Crenwelge, Chris Gowen (advisor), George McArthur IV (advisor), Cindy Lovelace (advisor), Adam Bower, Maria McClintock and Afton Trent (not pictured: Craig Alberg)]]
 +
'''The VCU iGEM Team thanks Dr. Fong and the [http://www.systemsbiology.vcu.edu/ Systems Biological Engineering Laboratory] for providing research space, materials, intellectual input and guidance through the development and advancement of this project.  Special thanks to [http://www.has.vcu.edu/bio/people/bios/ryan.html Dr. John Ryan] for teaching and allowing us to use his flow cytometer.'''

Latest revision as of 21:09, 21 October 2009


Promoter design, characterization and consequences

The generation of well-characterized genetic parts is a prerequisite for the rational design and construction of reliable genetically-encoded devices and systems. However, most publicly available parts (including those in the Registry) remain largely uncharacterized. Therefore, we propose a minimal measurement standard for the quantitative characterization of one of the most frequently used parts, promoters. This approach uses both mRNA and protein measurements to provide a tractable and universal analysis of relevant promoter characteristics. In an effort to elucidate promoter design principles, we have also designed and characterized new promoter and enhancer sequences. Our goal is to contribute to the advancement of fundamental synthetic biology by evaluating the performance of new and existing promoters and enhancers, which may serve as a model for describing other basic parts such as ribosome-binding sites and transcriptional terminators.


Left to right: Kevin Bussing, Dr. Stephen Fong (primary advisor), Clay Crenwelge, Chris Gowen (advisor), George McArthur IV (advisor), Cindy Lovelace (advisor), Adam Bower, Maria McClintock and Afton Trent (not pictured: Craig Alberg)

The VCU iGEM Team thanks Dr. Fong and the [http://www.systemsbiology.vcu.edu/ Systems Biological Engineering Laboratory] for providing research space, materials, intellectual input and guidance through the development and advancement of this project. Special thanks to [http://www.has.vcu.edu/bio/people/bios/ryan.html Dr. John Ryan] for teaching and allowing us to use his flow cytometer.