Team:Heidelberg/Project SaO
From 2009.igem.org
Line 9: | Line 9: | ||
The emergence of interest in manipulatable eukaryotic systems has posed much pressure on the development of methods to help understand and characterize eukaryotic gene regulation. Those methods go beyond the already rather sophisticated methodology still being established in prokaryotes to investigate and thereafter engineer these cells as needed [[Team:Heidelberg/Project_SaO#References|[1]]]. For one thing, the design of promoters exclusively responsive to one transcription factor (TF) within eukaryotic cells could certainly help improve our understanding of the key components of one pathway or the other, while eliminating the cross-talk often observed with many naturally occurring promoters. Such promoters have often posed a challenge to researchers studying signal transduction in eukaryotic systems because of the different types of TFs a single regulatory element can bind, and a single TF having multiple target regulatory regions [[Team:Heidelberg/Project_SaO#References|[2]]]. With the emergence of systematized research and attempts for modeling biological systems, the availability of data with minimal experimental variability and highly accurate experimental conditions has also contributed to the need for such finely-tuned promoters. Once such exclusive promoters could be available and methods for their characterization established, it is not so hard to imagine the revolutionary effect they could have on eukaryotic research. Some of many applications could be: | The emergence of interest in manipulatable eukaryotic systems has posed much pressure on the development of methods to help understand and characterize eukaryotic gene regulation. Those methods go beyond the already rather sophisticated methodology still being established in prokaryotes to investigate and thereafter engineer these cells as needed [[Team:Heidelberg/Project_SaO#References|[1]]]. For one thing, the design of promoters exclusively responsive to one transcription factor (TF) within eukaryotic cells could certainly help improve our understanding of the key components of one pathway or the other, while eliminating the cross-talk often observed with many naturally occurring promoters. Such promoters have often posed a challenge to researchers studying signal transduction in eukaryotic systems because of the different types of TFs a single regulatory element can bind, and a single TF having multiple target regulatory regions [[Team:Heidelberg/Project_SaO#References|[2]]]. With the emergence of systematized research and attempts for modeling biological systems, the availability of data with minimal experimental variability and highly accurate experimental conditions has also contributed to the need for such finely-tuned promoters. Once such exclusive promoters could be available and methods for their characterization established, it is not so hard to imagine the revolutionary effect they could have on eukaryotic research. Some of many applications could be: | ||
[[Image:HD09_GFPmchr_PM.jpg|thumb|left|350px|Figure 1: GFP and mcherry localizing to the plasma membrane might serve as output in an assay cell line]] | [[Image:HD09_GFPmchr_PM.jpg|thumb|left|350px|Figure 1: GFP and mcherry localizing to the plasma membrane might serve as output in an assay cell line]] | ||
- | + | *Understanding disease within a network context. | |
- | + | *High-accuracy studying of signaling transduction pathways. | |
- | + | *Designing better experiments to understand noisy genetic control in eukaryotes. | |
- | + | *Selective protein expression in target cells. | |
- | + | *Combinatorial gene therapy. | |
- | + | *Metabolic engineering. | |
- | + | *Building fine-tuned logic gates in cells. | |
:<!--A step further, but within context of our attempt to develop an array of promoters that could help in studying eukaryotic intracellular networks, the thought to provide a tool to help visualize such interactions was of importance.--> A high-level application of synthetic promoters that lies close at hand is the development of a <span style="font-size:5mm;">"cell-based drug screening assay"</span>. Such an assay is based upon a cell line which is stably transfected with a multitude of promoters responsive to a variety of pathways. Each promoter would be linked to a unique output signal (see below). This cell line could be stimulated with a variety of drug candidates, and the molecular effect of each drug would directly be visualized. The availability of such a cell line would greatly accelerate the pace of drug discovery and pharmacology alike. We have created all the parts and knowledge required for such an assay, and would only need to assemble it. | :<!--A step further, but within context of our attempt to develop an array of promoters that could help in studying eukaryotic intracellular networks, the thought to provide a tool to help visualize such interactions was of importance.--> A high-level application of synthetic promoters that lies close at hand is the development of a <span style="font-size:5mm;">"cell-based drug screening assay"</span>. Such an assay is based upon a cell line which is stably transfected with a multitude of promoters responsive to a variety of pathways. Each promoter would be linked to a unique output signal (see below). This cell line could be stimulated with a variety of drug candidates, and the molecular effect of each drug would directly be visualized. The availability of such a cell line would greatly accelerate the pace of drug discovery and pharmacology alike. We have created all the parts and knowledge required for such an assay, and would only need to assemble it. |
Revision as of 18:07, 20 October 2009
Outlook and summaryThe emergence of interest in manipulatable eukaryotic systems has posed much pressure on the development of methods to help understand and characterize eukaryotic gene regulation. Those methods go beyond the already rather sophisticated methodology still being established in prokaryotes to investigate and thereafter engineer these cells as needed [1]. For one thing, the design of promoters exclusively responsive to one transcription factor (TF) within eukaryotic cells could certainly help improve our understanding of the key components of one pathway or the other, while eliminating the cross-talk often observed with many naturally occurring promoters. Such promoters have often posed a challenge to researchers studying signal transduction in eukaryotic systems because of the different types of TFs a single regulatory element can bind, and a single TF having multiple target regulatory regions [2]. With the emergence of systematized research and attempts for modeling biological systems, the availability of data with minimal experimental variability and highly accurate experimental conditions has also contributed to the need for such finely-tuned promoters. Once such exclusive promoters could be available and methods for their characterization established, it is not so hard to imagine the revolutionary effect they could have on eukaryotic research. Some of many applications could be:
References[1] Venter M., Synthetic promoters: genetic control through cis engineering, Trends in Plant Science, 12:118-124 [2] Carey M., Smale S. T., Hughes H., Transcriptional Regulation in Eukaryotes: Concepts, Strategies and Techniques. New York:CSHL, p. 18-25 (2000) |