Team:USTC Software/WhatOverview
From 2009.igem.org
(→Interface) |
|||
Line 4: | Line 4: | ||
|valign = "top"| | |valign = "top"| | ||
{{USTCSW_SideBarL}} | {{USTCSW_SideBarL}} | ||
- | |||
<br /> | <br /> | ||
- | + | | | |
+ | {|- | ||
+ | |valign = "top" align = "justify" border = "0" width = "600px" bgcolor = "#F3F3F3"| | ||
'''One goal of synthetic biology is to understand the exciting biological phenomenon by reconstructing the systems that have the similar behavior to native. The design process is always very difficult for the biologists as the only information is the desired phenotype. Even the general system are improved to meet the requirement, the choices of reactors and the stability of the system are still problems for the experimentalists. Here we are trying to use the computer instead of the human brain to do the design process. ''' | '''One goal of synthetic biology is to understand the exciting biological phenomenon by reconstructing the systems that have the similar behavior to native. The design process is always very difficult for the biologists as the only information is the desired phenotype. Even the general system are improved to meet the requirement, the choices of reactors and the stability of the system are still problems for the experimentalists. Here we are trying to use the computer instead of the human brain to do the design process. ''' | ||
+ | |- | ||
+ | | | ||
==Goal== | ==Goal== | ||
The ultimate goal of our program is to assist the experimentalists to design the plasmid that works as the requirement. For example, if an oscillator behavior is the requirement as the input of the software, then the output in our imagination is a DNA sequence which works as an oscillator in E.coli or other specific biology. It is only an imagination that we have a long way to go. So, as the first goal, the output we are trying to do for the software is a network which can stably work as the requirement. Generally, the desired phenotype is the input of the software, and, optionally, the restrictions extracted from the other experiments or from the condition can be the input at the same time. And the output is a list of networks that have the similar phenotypes to the requirement, with the information of the value of parameters and the sensitivities. | The ultimate goal of our program is to assist the experimentalists to design the plasmid that works as the requirement. For example, if an oscillator behavior is the requirement as the input of the software, then the output in our imagination is a DNA sequence which works as an oscillator in E.coli or other specific biology. It is only an imagination that we have a long way to go. So, as the first goal, the output we are trying to do for the software is a network which can stably work as the requirement. Generally, the desired phenotype is the input of the software, and, optionally, the restrictions extracted from the other experiments or from the condition can be the input at the same time. And the output is a list of networks that have the similar phenotypes to the requirement, with the information of the value of parameters and the sensitivities. | ||
Line 26: | Line 29: | ||
==Future== | ==Future== | ||
It is just the first step. We still have a lot of to realize the final goal. First, the link should be established between the interaction forms and the real particles, as the promoters, the proteins, the ligands and so on. We are trying to build a database to construct the links, but the experiments data now are far than enough. And there are still some problems in the measurement of the parameters. Second, the optimization space is too large for us to search. Our program should run for a long time to finish the whole job. The parallel computation is favorable here. So we will use the parallel computation to do the optimization in the next version. Third, the on-line version is also required as it will be more convenient to the users. | It is just the first step. We still have a lot of to realize the final goal. First, the link should be established between the interaction forms and the real particles, as the promoters, the proteins, the ligands and so on. We are trying to build a database to construct the links, but the experiments data now are far than enough. And there are still some problems in the measurement of the parameters. Second, the optimization space is too large for us to search. Our program should run for a long time to finish the whole job. The parallel computation is favorable here. So we will use the parallel computation to do the optimization in the next version. Third, the on-line version is also required as it will be more convenient to the users. | ||
+ | |} | ||
|valign = "top"| | |valign = "top"| |
Revision as of 02:57, 21 October 2009
About | Team and People | Project | Standard | Notebook | Demo | Safety | External Links |
---|
|
|
|