Team:Kyoto/CiC/Experiment
From 2009.igem.org
(→Making proteoliposome by RTS) |
(→Making proteoliposome by RTS) |
||
Line 96: | Line 96: | ||
5. Making proteoloposome by RTS | 5. Making proteoloposome by RTS | ||
- | + | {| class="table" | |
+ | |+caption | ||
+ | |- | ||
+ | |sample name||volume /ul | ||
+ | |- | ||
+ | |E.coli lysate||12 | ||
+ | |- | ||
+ | |reaction mix ||10 | ||
+ | |- | ||
+ | |Amino acids mix||12 | ||
+ | |- | ||
+ | |methionine||1 | ||
+ | |- | ||
+ | |DNA||1 | ||
+ | |- | ||
+ | |liposome||14 | ||
+ | |} | ||
Revision as of 16:24, 21 October 2009
- Home
- Cells in Cells
- Results & Discussion
Experiment
Construction
HIV-TAT::(LALAAAA)3 expressing vector (BBa_K210009)
†RBS+HIV-TAT+HIStag+(LALAAAA)3 was made by elongation of primer dimer.
(Forward primer;
cggaattcgcggccgcttctagagaaagaggagaaatactagATGTATGGACGTAAAAAACGTCGTGGACGTCGTCGTGGCGGCGGTCAT CATCATCATCACCATGGCGG
Reverse primer;
ctgcagcggccgctactagtaTTACGCGGCCGCCGCCAGGGCCAGCGCGGCCGCCGCCAGGGCCAGCGCGGCCGCCGCCAGG GCCAGGCCACCGCCATGGTGATGATGATG
Signal for TIM23 complex::GFP expressing vector (BBa_K210010)
†RBS+Signal for TIM23 complex::GFP+terminator was made by two-stage PCR.
First-stage PCR
Forward primer;
TTTAAACCGGCGACCCGTACCCTGTGCTCTTCTCGTTATCTGCTGcgtaaaggagaagaacttttcactggagttg
Reverse primer;
agtgagctgataccgctcgc
Second-stage PCR
Forward primer;
cggaattcgcggccgcttctagagaaagaggagaaatactagATGCTGAGCCTGCGTCAGTCTATTCGTTTTTTT AAACCGGCGACCCGTAC
Reverse primer;
agtgagctgataccgctcgc
Signal for TIM23 complex::EGFP expressing vector for HeLa cells
We made the phosphated primerdimer by below primers. And, ligate it and pEGFP-N3 (GenBank Accession #: U57609) digested by Xho1 and Pst1.
Forward primer;
TCGAGgccaccATGggtCTGAGCCTGCGTCAGTCTATTCGTTTTTTTAAACCGGCGACCCGTACCCTGTGCTCTTCTCGTTATCTGCTG
Reverse primer;
AATTCAGCAGATAACGAGAAGAGCACAGGGTACGGGTCGCCGGTTTAAAAAAACGAATAGACTGACGCAGGCTCAGaccCATg gtggcC
Making proteoliposome by RTS
1. Remove the solvent of 50mM DOPC (Di-oleyl phosphatidylcholine, resolute in chloroform: methanol=2:1) 100μl in Ar.
2. Desiccate the DOPC in vacuum
3. Add 50mM HEPES-KOH 100μl
4. Adjust liposome size by mini-extruder of 200nm pore size filter
5. Making proteoloposome by RTS
sample name | volume /ul |
E.coli lysate | 12 |
reaction mix | 10 |
Amino acids mix | 12 |
methionine | 1 |
DNA | 1 |
liposome | 14 |
6. Ultracentrifuge RTS product in 5, 10, 15, 20, 25% sucrose HEPES-KOH solution.
Observation
Subgoal A
In the experiment on subgoal A, we are aimed to confirm that the liposome with HIV-TAT can intrude mammalian cells.We will mix pSB1A2-T7 promoter- HIV-TAT::(LALAAAA)3-ter and liposome with fluorochrome and translated by RTS. When HIV-TAT::(LALAAAA)3 is translated, it sticks the lipid bilayer. As a result, the liposome which has HIV-TAT on their surface is completed. Adding it to HeLa cells. Later, we will observe the fluorescence of liposome in HeLa cells.
Subgoal B
In the experiment on subgoal B, we are aimed to confirm that the recombinant of TIM23 complex can work as a protein translocater for its signal peptide. First, we confirm that the protein with the signal peptide for yeast can be taken in yeast’s and HeLa cell’s mitochondria. In the case of yeast’s mitochondria, we isolate mitochondria from yeast, translate signal GFP (BBa_K210010) by RTS and PURE system in which we have added the isolated yeast’s mitochondria. Then we will observe the localization of GFP fluorescence.
In the case of HeLa cell’s mitochondria, we transform HeLa cell by Signal for TIM23 complex::EGFP expressing vector for HeLa cells. Later, we will observe the localization of EGFP fluorescence.
Second, we make proteoliposome which has the recombinant of yeast TIM23 complex and mix it in Signal for TIM23 complex::GFP which is translated by RTS. Then we will observe the localization of GFP fluorescence.