Team:Utah State/Secretion
From 2009.igem.org
Bradhenrie (Talk | contribs) |
|||
Line 134: | Line 134: | ||
<p class="class">Recently, extracellular deposition of PHA granules was observed in a mutant strain of Alcanivorax borkumensis SK2, which is a marine bacterium that uses hydrocarbons as its source of carbon and energy (Sabirova, 2006). This finding by Sabirova et al (2006) is the first account of PHA accumulation outside of the cell (Prieto, 2007). However, the mechanism by which this deposition occurs is unknown (Sabirova, 2006; Prieto, 2007). A defined system for microbial excretion of PHAs has yet to be created. Such a system would be of value due to the potential to optimize and introduce the mechanism into other organisms with advantageous characteristics, such as fast-growing E. <i>coli</i> or photoautotrophic PHA-producers R. <i>sphaeroides</i> and <i>Synechocystis</i> PCC6803. </p> | <p class="class">Recently, extracellular deposition of PHA granules was observed in a mutant strain of Alcanivorax borkumensis SK2, which is a marine bacterium that uses hydrocarbons as its source of carbon and energy (Sabirova, 2006). This finding by Sabirova et al (2006) is the first account of PHA accumulation outside of the cell (Prieto, 2007). However, the mechanism by which this deposition occurs is unknown (Sabirova, 2006; Prieto, 2007). A defined system for microbial excretion of PHAs has yet to be created. Such a system would be of value due to the potential to optimize and introduce the mechanism into other organisms with advantageous characteristics, such as fast-growing E. <i>coli</i> or photoautotrophic PHA-producers R. <i>sphaeroides</i> and <i>Synechocystis</i> PCC6803. </p> | ||
- | <p class="class">PHA-associated proteins, called phasins, strongly interact with the PHA granule surface (York, 2001; Maehara, 1999). Accordingly, PHA recovery may be possible by tagging the phasin protein for translocation. Specifically, the Silver fusion Biobrick standard can be used to create constructs in which a targeting signal peptide sequence is genetically fused to the phasin protein (Phillips, 2006). Fusing a signal peptide to a protein promotes export of the complex out of the cytoplasm (Choi, 2004; Mergulhão, 2005). The interaction of phasin with PHA is required for secretion-based granule recovery because PHA is a non-proteinaceous compound produced by the action of three enzymes (Suriyanmongkol 2007; Verlinden 2007). Consequently, the signal peptide cannot be directly attached PHA granules. The phasin protein with attached signal peptide binds to PHA granules, thereby creating a PHA-phasin-signal peptide complex that may be recognized by the cell for export. Figure | + | <p class="class">PHA-associated proteins, called phasins, strongly interact with the PHA granule surface (York, 2001; Maehara, 1999). Accordingly, PHA recovery may be possible by tagging the phasin protein for translocation. Specifically, the Silver fusion Biobrick standard can be used to create constructs in which a targeting signal peptide sequence is genetically fused to the phasin protein (Phillips, 2006). Fusing a signal peptide to a protein promotes export of the complex out of the cytoplasm (Choi, 2004; Mergulhão, 2005). The interaction of phasin with PHA is required for secretion-based granule recovery because PHA is a non-proteinaceous compound produced by the action of three enzymes (Suriyanmongkol 2007; Verlinden 2007). Consequently, the signal peptide cannot be directly attached PHA granules. The phasin protein with attached signal peptide binds to PHA granules, thereby creating a PHA-phasin-signal peptide complex that may be recognized by the cell for export. Figure 1 depicts this export process in general terms. Green fluorescent protein (GFP) translocation has been documented (Barrett, 2003; Santini, 2001; Thomas, 2001). Due to its ease of detection, studying GFP in parallel with phasin secretion mechanisms could provide a framework for determining the functionality of secretion systems.</p> |
<br> | <br> | ||
<div align="center"><img src="https://static.igem.org/mediawiki/2009/2/25/Bioplasticscheme.jpg"" align = "middle" height="200" style="padding:.5px; border-style:solid; border-color:#999" alt="Team USU" /> </div> | <div align="center"><img src="https://static.igem.org/mediawiki/2009/2/25/Bioplasticscheme.jpg"" align = "middle" height="200" style="padding:.5px; border-style:solid; border-color:#999" alt="Team USU" /> </div> | ||
<div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | <div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | ||
- | <b>Figure | + | <b>Figure 1.</b> Schematic for bioplastic recovery by secretion |
</div> | </div> | ||
<br> | <br> | ||
<p class="class"> | <p class="class"> | ||
- | Secretion-based product recovery mechanisms hold great potential to improve the economics of industrial-scale production systems. In addition to reduced downstream processing requirements, secretory production has additional benefits, such as potentially improved product stability and solubility (Mergulhão, 2005). Recombinant | + | Secretion-based product recovery mechanisms hold great potential to improve the economics of industrial-scale production systems. In addition to reduced downstream processing requirements, secretory production has additional benefits, such as potentially improved product stability and solubility (Mergulhão, 2005). Recombinant <i>E. coli</i> do not typically secrete high levels of proteins and functionality of proteins secretion is difficult to predict (Sandkvist, 1996; Choi, 2004). Accordingly, a trial-and-error approach with different combinations of signal peptides and promoters is recommended for any given protein, and will be discussed in more detail in subsequent sections (Choi, 2004). |
</p></p> | </p></p> | ||
Line 153: | Line 153: | ||
<p class="class"> | <p class="class"> | ||
There are five pathways observed for secretion of recombinant proteins in gram-negative prokaryotes, numbered I through V (Desvaux, 2004; Mergulhão, 2005). While all of these pathways differ mechanistically, they each promote secretion while maintaining the integrity of the cell structure (Koster, 2000). Types I and II are the most common pathways for recombinant protein secretion (Mergulhao, 2005) and will be discussed here. </p> | There are five pathways observed for secretion of recombinant proteins in gram-negative prokaryotes, numbered I through V (Desvaux, 2004; Mergulhão, 2005). While all of these pathways differ mechanistically, they each promote secretion while maintaining the integrity of the cell structure (Koster, 2000). Types I and II are the most common pathways for recombinant protein secretion (Mergulhao, 2005) and will be discussed here. </p> | ||
- | <p class="class">Type I secretion is a single-step translocation of protein across both inner and outer membranes. (Binet, 1997). The constituents of this system include inner membrane proteins HlyB and HlyD, as well as the TolC outer membrane protein (Mergulhão, 2005; Desveax, 2004). These three proteins interact to form a channel that spans the periplasm (Mergulhão, 2005). Appending the last 42-60 amino acids of the HlyA protein C-terminus to the C-terminus of a recombinant protein targets the protein for secretion (Mergulhão, 2005; Gentschev, 2003; Hess, 1990). The HlyA signal sequence binds to the channel complex, resulting in ATP hydrolysis by HlyB to drive protein secretion (Gentschev, 2003). Proteins as large as 4000 amino acids can be secreted through the type I channel, which has an internal diameter of 3.5 nm and a length of 14 nm (Sapriel, 2003; Fernandez and de Lorenzo, 2001). Unlike in the Type II pathway, the signal peptides of Type I secretion remain attached to the protein after export out of the cytoplasm (Blight and Holland, 1994). Figure | + | <p class="class">Type I secretion is a single-step translocation of protein across both inner and outer membranes. (Binet, 1997). The constituents of this system include inner membrane proteins HlyB and HlyD, as well as the TolC outer membrane protein (Mergulhão, 2005; Desveax, 2004). These three proteins interact to form a channel that spans the periplasm (Mergulhão, 2005). Appending the last 42-60 amino acids of the HlyA protein C-terminus to the C-terminus of a recombinant protein targets the protein for secretion (Mergulhão, 2005; Gentschev, 2003; Hess, 1990). The HlyA signal sequence binds to the channel complex, resulting in ATP hydrolysis by HlyB to drive protein secretion (Gentschev, 2003). Proteins as large as 4000 amino acids can be secreted through the type I channel, which has an internal diameter of 3.5 nm and a length of 14 nm (Sapriel, 2003; Fernandez and de Lorenzo, 2001). Unlike in the Type II pathway, the signal peptides of Type I secretion remain attached to the protein after export out of the cytoplasm (Blight and Holland, 1994). Figure 2 depicts the secretion of a protein with a C-terminal fused HlyA signal peptide by Type I secretion (Mergulão, 2005). |
<br> | <br> | ||
</p> | </p> | ||
<div align="center"><img src="https://static.igem.org/mediawiki/2009/e/ed/FigureHlyATypeI.png"" align = "middle" height="150" style="padding:.5px; border-style:solid; border-color:#999" alt="HlyA" /> </div> | <div align="center"><img src="https://static.igem.org/mediawiki/2009/e/ed/FigureHlyATypeI.png"" align = "middle" height="150" style="padding:.5px; border-style:solid; border-color:#999" alt="HlyA" /> </div> | ||
<div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | <div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | ||
- | <b>Figure | + | <b>Figure 2.</b> HlyA Type I Secretion Pathway |
</div> | </div> | ||
<br> | <br> | ||
Line 165: | Line 165: | ||
<p class="class"> | <p class="class"> | ||
- | Translocation of cellular products into the periplasm is advantageous over cytoplasmic production because recovery of periplasmic products is relatively simpler (Mergulhão, 2005). There are additional mechanisms for recovering periplasmic proteins if the secreton machinery is either not present in the host strain or incompatible with the protein of interest. These mechanisms are depicted in Figure | + | Translocation of cellular products into the periplasm is advantageous over cytoplasmic production because recovery of periplasmic products is relatively simpler (Mergulhão, 2005). There are additional mechanisms for recovering periplasmic proteins if the secreton machinery is either not present in the host strain or incompatible with the protein of interest. These mechanisms are depicted in Figure 3. L-form and Q-cells are mutant strains that have a weakened outer membrane, which allows for some proteins to leak into the extracellular medium (Mergulhão, 2005). However, these organisms have reduced growth rates and are not ideal candidates for general cellular production. The permeability of the outer membrane may be enhanced mechanically, such as by application of ultrasound, or through chemical treatment, such as through addition of Triton X-100 or 2% glycine (Kaderbhai, 1997; Choi, 2004). As another example, enzymatic digestion with lysozyme breaks the outer membrane to release periplasmic proteins (Shokri, 2003). Yet another alternative involves coexpression of genes, such as kil, out, and tolAIII, that cause cellular lysis and subsequent release of recombinant proteins (Choi, 2004; Mergulhão, 2005). The downside to these alternatives is the weakening of cell integrity. |
</p><br> | </p><br> | ||
Line 180: | Line 180: | ||
<p class="class"> | <p class="class"> | ||
- | The TAT system is used to export folded proteins into the periplasmic space (Choi, 2004). Like the Sec-dependent pathways, specific N-terminal signal peptide sequences target a protein for export by the TAT machinery. Although similar, TAT signal peptides differ from those that target proteins to the Sec machinery. TAT signal peptides contain a conserved sequence of seven amino acids, (S/T)-R-R-x-F-L-K, at the interface between the N- and H-regions, where x represents a polar amino acid (Berks, 2000; Palmer, 2004). The twin-arginine residues are consistently present in TAT signal peptides, and the occurrence of the other amino acids is greater than 50% (Berks 1996, Berks 2000, Palmer, 2004). Figure | + | The TAT system is used to export folded proteins into the periplasmic space (Choi, 2004). Like the Sec-dependent pathways, specific N-terminal signal peptide sequences target a protein for export by the TAT machinery. Although similar, TAT signal peptides differ from those that target proteins to the Sec machinery. TAT signal peptides contain a conserved sequence of seven amino acids, (S/T)-R-R-x-F-L-K, at the interface between the N- and H-regions, where x represents a polar amino acid (Berks, 2000; Palmer, 2004). The twin-arginine residues are consistently present in TAT signal peptides, and the occurrence of the other amino acids is greater than 50% (Berks 1996, Berks 2000, Palmer, 2004). Figure 3 illustrates the mechanism for protein export by the Sec and TAT pathways.</p> |
<br> | <br> | ||
<div align="center"><img src="https://static.igem.org/mediawiki/2009/9/91/FigureSecTAT.png"" align = "middle" height="200" style="padding:.5px; border-style:solid; border-color:#999" alt="Team USU" /> </div> | <div align="center"><img src="https://static.igem.org/mediawiki/2009/9/91/FigureSecTAT.png"" align = "middle" height="200" style="padding:.5px; border-style:solid; border-color:#999" alt="Team USU" /> </div> | ||
<div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | <div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | ||
- | <b>Figure | + | <b>Figure 3.</b> Mechanism of protein translocation by Sec and Tat |
</div> | </div> | ||
<br> | <br> | ||
Line 196: | Line 196: | ||
</font></b></i> | </font></b></i> | ||
<p class="class"> | <p class="class"> | ||
- | Signal peptides consist of about 15-30 amino acids and are generally required to direct a secretory protein to the translocons of the cytoplasmic membrane (Pugsley, 1993; Choi, 2004; Luirink, 2004). Despite overall sequence variability, structural similarities exist between different signal peptides, including a positively-charged 2-10 amino acid N-region, a hydrophobic core H-region, and a neutral C-domain of about 6 residues (Pugsley, 1993; Molhoj, 2004; Berks, 2000). The C-domain conforms to the -3, -1 rule in which amino acids with short and neutral side-chains, such as alanine, are required in positions -3 and -1 of the sequence (Choi, 2004; von Heijne, 1984). A signal peptidase interacts with a cleavage recognition site within the C-domain to release the protein into the periplasmic space (Luiritz, 2004; Choi, 2004). The absence or mutation of the cleavage site can lead to the targeted protein remaining fixed to the inner membrane (Luiritz, 2004). Figure | + | Signal peptides consist of about 15-30 amino acids and are generally required to direct a secretory protein to the translocons of the cytoplasmic membrane (Pugsley, 1993; Choi, 2004; Luirink, 2004). Despite overall sequence variability, structural similarities exist between different signal peptides, including a positively-charged 2-10 amino acid N-region, a hydrophobic core H-region, and a neutral C-domain of about 6 residues (Pugsley, 1993; Molhoj, 2004; Berks, 2000). The C-domain conforms to the -3, -1 rule in which amino acids with short and neutral side-chains, such as alanine, are required in positions -3 and -1 of the sequence (Choi, 2004; von Heijne, 1984). A signal peptidase interacts with a cleavage recognition site within the C-domain to release the protein into the periplasmic space (Luiritz, 2004; Choi, 2004). The absence or mutation of the cleavage site can lead to the targeted protein remaining fixed to the inner membrane (Luiritz, 2004). Figure 4 shows the typical composition of a signal peptide sequence.</p><br> |
<div align="center"><img src="https://static.igem.org/mediawiki/2009/f/f2/Signal_peptide.png"" align = "middle" height="50" style="padding:.5px; alt="signal peptide" /> </div> | <div align="center"><img src="https://static.igem.org/mediawiki/2009/f/f2/Signal_peptide.png"" align = "middle" height="50" style="padding:.5px; alt="signal peptide" /> </div> | ||
<div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | <div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | ||
- | <b>Figure | + | <b>Figure 4.</b> Typical signal peptide sequence |
</div> | </div> | ||
Line 237: | Line 237: | ||
<p class="class"> | <p class="class"> | ||
- | GFP is a commonly used reporter of gene regulation. It is expressed in many bioluminescent jellyfish naturally (Shimomura, 1962). Its value in the academic and biotechnology industry was recognized after successful cloning and expression in E. <i>coli</i> (Chalfie, 1994). Purified GFP, composed of 238 amino acids, absorbs blue light (395 nm) and emits green light (Chalfie, 1994). The detection of intracellular GFP is not limited by the availability of substrates, but requires only irradiation by near UV or blue light (Chalfie, 1994). However, to ease the process of GFP detection for many organisms, a stronger whole cell fluorescence signal is desirable. Figure | + | GFP is a commonly used reporter of gene regulation. It is expressed in many bioluminescent jellyfish naturally (Shimomura, 1962). Its value in the academic and biotechnology industry was recognized after successful cloning and expression in E. <i>coli</i> (Chalfie, 1994). Purified GFP, composed of 238 amino acids, absorbs blue light (395 nm) and emits green light (Chalfie, 1994). The detection of intracellular GFP is not limited by the availability of substrates, but requires only irradiation by near UV or blue light (Chalfie, 1994). However, to ease the process of GFP detection for many organisms, a stronger whole cell fluorescence signal is desirable. Figure 5 depicts the GFP barrel structure.</p> |
<div align="center"><img src="https://static.igem.org/mediawiki/2009/6/60/GFpbarrel.jpg"" align = "middle" height="200" style="padding:.5px; alt="signal peptide" /> </div> | <div align="center"><img src="https://static.igem.org/mediawiki/2009/6/60/GFpbarrel.jpg"" align = "middle" height="200" style="padding:.5px; alt="signal peptide" /> </div> | ||
<div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | <div align="center"><font size="2.5" face="Helvetica, Arial, San Serif" color =#231f20> | ||
- | <b>Figure | + | <b>Figure 5.</b> The GFP Barrel Structure |
</div> | </div> | ||
Revision as of 03:17, 22 October 2009
|
|