Team:British Columbia
From 2009.igem.org
(→The Bacterial Traffic Light: A flexible, modular, and transparent system for multi-level assessment of variable inputs.') |
(→The Bacterial Traffic Light: A flexible, modular, and transparent system for multi-level assessment of variable inputs.') |
||
Line 1: | Line 1: | ||
{{Template:UBCiGEM2009_menu_home}} | {{Template:UBCiGEM2009_menu_home}} | ||
- | = | + | =<font color="#FF0000"E.coli<font> Traffic Light: <br> A ''flexible'', ''modular'', and ''transparent'' system for multi-level assessment of variable inputs.'= |
Biosensors have a diverse variety of real-world functions, ranging from measuring blood glucose levels in diabetes patients to assessing environmental contamination of trace toxins. The majority of these sensors are highly specific for a single input, and their outputs often require specialized equipment such as surface plasmon resonance chips. Our project aims to create a biosensor that recognizes a specific target and alters its output fluorescence from green, to yellow, to red as a function of concentration up to critical levels (hence, a biological "traffic light"). | Biosensors have a diverse variety of real-world functions, ranging from measuring blood glucose levels in diabetes patients to assessing environmental contamination of trace toxins. The majority of these sensors are highly specific for a single input, and their outputs often require specialized equipment such as surface plasmon resonance chips. Our project aims to create a biosensor that recognizes a specific target and alters its output fluorescence from green, to yellow, to red as a function of concentration up to critical levels (hence, a biological "traffic light"). | ||
Revision as of 03:01, 22 October 2009
Home Team Traffic Light Sensor Lock&Key Jammer [http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2009&group=British_Columbia Parts] Safety Sponsors Notebook Bibliography
<font color="#FF0000"E.coli Traffic Light:
A flexible, modular, and transparent system for multi-level assessment of variable inputs.'
Biosensors have a diverse variety of real-world functions, ranging from measuring blood glucose levels in diabetes patients to assessing environmental contamination of trace toxins. The majority of these sensors are highly specific for a single input, and their outputs often require specialized equipment such as surface plasmon resonance chips. Our project aims to create a biosensor that recognizes a specific target and alters its output fluorescence from green, to yellow, to red as a function of concentration up to critical levels (hence, a biological "traffic light").
Click the colours of the traffic light to learn about its different subparts!
The Traffic Light is composed of three distinct subparts:
- The pBAD promoter family
- The lock and key riboregulation system
- The Jammer.