Team:UCSF/Notebook

From 2009.igem.org

(Difference between revisions)
(Dictyostelium Group)
Line 1: Line 1:
-
== '''HL60 Group''' ==
+
<html xmlns="http://www.w3.org/1999/xhtml">
-
* '''Goals:''' Our goals for this project are to screen 30 various different GPCR's (G couple protein receptors)to determine which receptors mediate chemotaxis using the high through put transwell assay. After first phase screening using 5-6 day differentiated HL-60 cell transfected with known receptors is completed, we move on to the secondary stage of screening with viable chemotatic receptors. During the second stage of screening we fused "Actin Modulators", "PIP3 Modulators", and "GEF Activators" in hopes of an accelerated chemotatic response.
+
<head>
-
*'''''Engineering Navigation:'''''
+
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
-
*''sending cells to new targets - ''GPCR Screening
+
<title>Untitled Document</title>
 +
<style type="text/css">
 +
<!--
 +
body {
 +
margin-left: 20px;
 +
margin-right: 20px;
 +
width: 900px;
 +
}
 +
-->
 +
</style></head>
 +
<body>
-
*''tuning receptor sensitivity - ''Forced localization of effector proteins to GPCRs
+
<h1  align="left">Notebooks</h1>
-
*'''''Payload:'''''
+
<p align="left">In the beginning of the summer our team was divided into two groups - one group focused on Engineering NAVIGATION and the other group focused on Engineering SPEED. The group that engineered NAVIGATION worked with HL60 cells - HL60 group. The group that engineered SPEED worked with <em>Dictyostelium</em> - Dicty Group.</p>
-
*''can we make our cells carry stuff? - ''attach beads to cells
+
<blockquote>
-
+
<h2 align="left">HL60 Team</h2>
-
+
<p align="left"><strong>GOAL</strong>: Our goals for this project are to screen 30 various different GPCR's (G couple protein receptors) to determine which receptors mediate chemotaxis using the high through put transwell assay. After the first phase screening using 5-6 day differentiated HL-60 cell transfected with known receptors is completed, we move on to the secondary phase of screening with viable chemotatic receptors. During the second phase of screening we fused &quot;Actin Modulators&quot;, &quot;PIP3 Modulators&quot;, and &quot;GEF Activators&quot; in hopes of an accelerated chemotatic response. </p>
-
+
<p align="left"> <strong>ENGINEERING NAVIGATION</strong>:</p>
-
*[[Cathy Liu's notebook]]: I was one of the main players on team HL-60 who conducted the transwells for the GPCR screen. This included transfections and analysis of data. I was Aynur’s student and Ryan’s and Eric’s buddy. And what a beautiful team we made!
+
<ul>
-
*[[Eric Wong's notebook]]: I worked on cloning, PCR, Gel purification and extraction, and was apart of the GPCR screening team.
+
  <li><em>Can we send our cells to new targets?</em>  Inserting new Sensors to HL60 (GPCR Screening)</li>
-
*[[Jackie Tam's notebook]]: I was responsible for cloning, microscopy, and video analysis.
+
  <li><em>Can we make our new engineered cells more or less sensitive to the new signals?</em> Tuning receptor sensitivity by attaching recycling modules to the new GPCRs</li>
-
*[[Ryan Liang's notebook]]:I cloned parts to be used in the GPCR screens, transfected HL-60 cells with various different GPCRs, ran transwell assays, and analyzed/compared transwell assay results.
+
  </ul>
-
*[[Katja Kolar's notebook]]: I did microscopy with wt and hM4D-transfected HL-60 cells, experiments for the "Payload" part of the project, and cloned HL-60 team constructs.
+
<p><strong>Team members</strong></p>
-
*[[Hansi Liu's notebook]]:
+
<p><a href="https://2009.igem.org/Cathy_Liu%27s_notebook">Cathy Liu's notebook</a>: I was one of the main players on team HL-60 who conducted the transwells for the GPCR screen. This included transfections and analysis of data. I was Aynur’s student and Ryan’s and Eric’s buddy. And what a beautiful team we made!<br />
 +
  <a href="https://2009.igem.org/Eric_Wong's_notebook">Eric Wong's notebook</a>: I worked on cloning, PCR, Gel purification and extraction, and was apart of the GPCR screening team.<br />
 +
  <a href="https://2009.igem.org/Jackie_Tam's_notebook">Jackie Tam's notebook</a>: I was responsible for cloning, microscopy, and video analysis.<br />
 +
  <a href="https://2009.igem.org/Ryan_Liang's_notebook">Ryan Liang's notebook</a>:I cloned parts to be used in the GPCR screens, transfected HL-60 cells with various different GPCRs, ran transwell assays, and analyzed/compared transwell assay results.<br />
 +
  <a href="https://2009.igem.org/Hansi_Liu's_notebook">Hansi Liu's notebook</a>: </p>
 +
<p>&nbsp;</p>
 +
<p align="left"><strong>MAKING CELLS CARRY PAYLOAD</strong>:</p>
 +
  <ul>
 +
    <li><em>Can we make our cells carry stuff?</em> - proof-of-conept: attach beads to cells </li>
 +
  </ul>
 +
  <p><strong>Team members</strong></p>
 +
  <p><a href="https://2009.igem.org/Katja_Kolar's_notebook">Katja Kolar's notebook</a>: I did microscopy with wt and hM4D-transfected HL-60 cells, experiments for the &quot;Payload&quot; part of the project, and cloned HL-60 team constructs. </p>
 +
  <p align="left">&nbsp;</p>
 +
  <h2 align="left">Dicty Team</h2>
 +
  <p align="left"><strong>GOAL</strong>: Our goals for this project are to screen 30 various different GPCR's (G couple protein receptors) to determine which receptors mediate chemotaxis using the high through put transwell assay. After the first phase screening using 5-6 day differentiated HL-60 cell transfected with known receptors is completed, we move on to the secondary phase of screening with viable chemotatic receptors. During the second phase of screening we fused &quot;Actin Modulators&quot;, &quot;PIP3 Modulators&quot;, and &quot;GEF Activators&quot; in hopes of an accelerated chemotatic response. </p>
 +
  <p align="left"> <strong>ENGINEERING SPEED</strong>:</p>
 +
  <ul>
 +
    <li><em>Can we send our cells move faster or slower?</em> Creating brakes and accelerators by modulating PIP3 polarity - building synthetic feedback loops by fusing catalytic and localization domains.</li>
 +
  </ul>
 +
  <p><strong>Milestones</strong>:</p>
 +
  <p>Step 1. PCR parts: catalytic and localization domains<br />
 +
    Step 2. Create combinations of localization domains and catalytic domains (feedback elements)<br />
 +
    Step 3. Generate Dictyostelium strains expressing feedback elements<br />
 +
    Step 4. Measure motility parameters (speed, directionality)<br />
 +
  Step 5. Analyze data. Create histograms and compare if our new feedback elements had any effect on Dicty. Do they cause them to move faster or slower? </p>
 +
  <p><strong>Team members</strong></p>
 +
  <p> <a href="https://2009.igem.org/Allen_Cai's_notebook">Allen Cai's notebook</a>: I worked mostly on the clonning part of the project. I ligated a lot of the localization and catalytic domains together. I also took care so some dicty strains and made some movies of those dicty strains.<br />
 +
    <a href="https://2009.igem.org/Alex_Smith's_notebook">Alex Smith's notebook</a>:<br />
 +
    <a href="https://2009.igem.org/Edna_Miao's_notebook">Edna Miao's notebook</a>: I transformed new constructs into Dicty, analyzed data, and worked with wildtype and PTEN null dicty.<br />
 +
    <a href="https://2009.igem.org/Ethan_Chan's_notebook">Ethan Chan's notebook</a>: Constructed Dicty cells with new parts, analyzed data, and worked with wildtype and PTEN null dicty cells.<br />
 +
    <a href="https://2009.igem.org/Ryan_Quan's_notebook">Ryan Quan's notebook</a>:I worked on team dicty and taught the students some basic cloning techniques but mainly learned many new things along with them. </p>
 +
</blockquote>
 +
</body>
 +
</html>
-
== '''Dictyostelium Group''' ==
 
-
* '''Goals:'''
 
-
* '''''Engineering brakes and accelerators:'''''
 
-
* ''modulating PIP3 polarity by building synthetic protein based feedback loops''
 
-
* workflow:
 
-
*1. PCR parts: catalytic and localization domains
 
-
*2. Create combinations of localization domains and catalytic domains
 
-
*3. Generate Dictyostelium strains expressing feedback elements
 
-
*4. Measure motility parameters (speed, directionality)
 
-
*3. Analyze data. Create histograms and compare if our plasmid had any effect to dicty.Do they cause them to move faster or slower?
 
-
 
-
 
-
*[[Allen Cai's notebook]]: I worked mostly on the cloning part of the project. I ligated a lot of the localization and catalytic domains together. I also took care so some dicty strains and made some movies of those dicty strains.
 
-
*[[Alex Smith's notebook]]:
 
-
*[[Edna Miao's notebook]]: I transformed new constructs into Dicty, analyzed data, and worked with wildtype and PTEN null dicty.
 
-
*[[Ethan Chan's notebook]]: Constructed Dicty cells with new parts, analyzed data, and worked with wildtype and PTEN null dicty cells.
 
-
*[[Ryan Quan's notebook]]:I worked on team dicty and taught the students some basic cloning techniques but mainly learned many new things along with them.
 
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"

Revision as of 22:01, 20 October 2009

Untitled Document

Notebooks

In the beginning of the summer our team was divided into two groups - one group focused on Engineering NAVIGATION and the other group focused on Engineering SPEED. The group that engineered NAVIGATION worked with HL60 cells - HL60 group. The group that engineered SPEED worked with Dictyostelium - Dicty Group.

HL60 Team

GOAL: Our goals for this project are to screen 30 various different GPCR's (G couple protein receptors) to determine which receptors mediate chemotaxis using the high through put transwell assay. After the first phase screening using 5-6 day differentiated HL-60 cell transfected with known receptors is completed, we move on to the secondary phase of screening with viable chemotatic receptors. During the second phase of screening we fused "Actin Modulators", "PIP3 Modulators", and "GEF Activators" in hopes of an accelerated chemotatic response.

ENGINEERING NAVIGATION:

  • Can we send our cells to new targets? Inserting new Sensors to HL60 (GPCR Screening)
  • Can we make our new engineered cells more or less sensitive to the new signals? Tuning receptor sensitivity by attaching recycling modules to the new GPCRs

Team members

Cathy Liu's notebook: I was one of the main players on team HL-60 who conducted the transwells for the GPCR screen. This included transfections and analysis of data. I was Aynur’s student and Ryan’s and Eric’s buddy. And what a beautiful team we made!
Eric Wong's notebook: I worked on cloning, PCR, Gel purification and extraction, and was apart of the GPCR screening team.
Jackie Tam's notebook: I was responsible for cloning, microscopy, and video analysis.
Ryan Liang's notebook:I cloned parts to be used in the GPCR screens, transfected HL-60 cells with various different GPCRs, ran transwell assays, and analyzed/compared transwell assay results.
Hansi Liu's notebook:

 

MAKING CELLS CARRY PAYLOAD:

  • Can we make our cells carry stuff? - proof-of-conept: attach beads to cells

Team members

Katja Kolar's notebook: I did microscopy with wt and hM4D-transfected HL-60 cells, experiments for the "Payload" part of the project, and cloned HL-60 team constructs.

 

Dicty Team

GOAL: Our goals for this project are to screen 30 various different GPCR's (G couple protein receptors) to determine which receptors mediate chemotaxis using the high through put transwell assay. After the first phase screening using 5-6 day differentiated HL-60 cell transfected with known receptors is completed, we move on to the secondary phase of screening with viable chemotatic receptors. During the second phase of screening we fused "Actin Modulators", "PIP3 Modulators", and "GEF Activators" in hopes of an accelerated chemotatic response.

ENGINEERING SPEED:

  • Can we send our cells move faster or slower? Creating brakes and accelerators by modulating PIP3 polarity - building synthetic feedback loops by fusing catalytic and localization domains.

Milestones:

Step 1. PCR parts: catalytic and localization domains
Step 2. Create combinations of localization domains and catalytic domains (feedback elements)
Step 3. Generate Dictyostelium strains expressing feedback elements
Step 4. Measure motility parameters (speed, directionality)
Step 5. Analyze data. Create histograms and compare if our new feedback elements had any effect on Dicty. Do they cause them to move faster or slower?

Team members

Allen Cai's notebook: I worked mostly on the clonning part of the project. I ligated a lot of the localization and catalytic domains together. I also took care so some dicty strains and made some movies of those dicty strains.
Alex Smith's notebook:
Edna Miao's notebook: I transformed new constructs into Dicty, analyzed data, and worked with wildtype and PTEN null dicty.
Ethan Chan's notebook: Constructed Dicty cells with new parts, analyzed data, and worked with wildtype and PTEN null dicty cells.
Ryan Quan's notebook:I worked on team dicty and taught the students some basic cloning techniques but mainly learned many new things along with them.



Home The Team The Project Parts Submitted to the Registry Our summer experience Notebook Human Practices