Team:Calgary

From 2009.igem.org

(Difference between revisions)
Line 407: Line 407:
</td>
</td>
<td>
<td>
-
Communication is essential in our everyday lives; it drives collaboration, understanding, and progress. The University of Calgary iGEM Team recognizes the importance of communication in developing the field of synthetic biology. This year, our team is exploring the development of a communication system in <i>E. coli</i>: the AI-2 signalling system. This system allows for the coordination of bacterial behaviour, essentially allowing a large group to act as a single organism.<br>
+
For the wetlab, we explored the concept of Quorum Sensing, a cell-to-cell communication process used by bacteria. We constructed the <i>V. harveyi</i> AI-2 signalling system in <i>E. coli</i>. This system allows for the fined tuned coordination of bacterial behaviour in that bacterial colonies are able to act as single entities. <br>
<br>
<br>
</td>
</td>

Revision as of 00:47, 21 October 2009

University of Calgary

UNIVERSITY OF CALGARY





RECENT PHOTOS
iGEM Calgary - Flickriver


SPONSOR OF THE MONTH
Talisman Energy is an independent upstream oil and gas companies headquartered in Calgary, Alberta, Canada. Talisman has operations in Canada and its subsidiaries operate in the UK, Norway, Southeast Asia, North Africa and the United States. It is committed to conducting business in an ethically and environmentally responsible manner. Talisman’s generous support and contribution to the University of Calgary’s iGEM project has recognized Talisman among this year’s Bronze sponsors. Thank you Talisman Energy and Congratulations!


OUR SPONSORS

   
iGEM - INTERNATIONAL GENETICALLY ENGINEERED MACHINES
The International Genetically Engineered Machines (iGEM) competition is annually held at the Massachusetts Institute of Technology (MIT) in the field of Synthetic Biology. Since 2004, this competition encourages undergraduate teams from all over the world to develop a project that intertwines the principles of Biology and Engineering. The competition not only determines the worth of projects solely based on biological merit, but also requires teams to examine their project as a whole. This includes aspects such as modelling of genetic circuits, marketing the project and educating the public about iGEM and Synthetic Biology. For more information about iGEM, please visit their official website.

The U of C iGEM team is made up of 15 undergraduate students from Health Sciences, Engineering, Computer Science and Kinesiology as well as 4 facilitators. For more information regarding the U of C iGEM Enterprise, please visit our website.


NAVIGATION
Need help navigating our site? Click HERE for a navigational guide and sitemap. Or, follow our tour:

A TOUR OF THE UNIVERSITY OF CALGARY iGEM TEAM

Welcome to the University of Calgary iGEM wiki! This is the first step of our tour! With this tour, you will not only learn about our overall project, but also delve into all aspects of our project and find out what we've been up to lately. On this page, you can read about iGEM, our project, and check out a few pictures that display our adventures in synthetic biology. Also, please feel free to leave any comments or suggestions at the bottom of the page. Once you've finished exploring our front page, please click HERE to continue the tour for an intro of our team!



U OF C iGEM: REPROGRAMMING A LANGUAGE AND A COMMUNITY
The progression of strong scientific research depends on whether industry and the public know about it and understand how the research can be applied. With this in mind, the U of C iGEM team’s work stretches far beyond the wetlab. We pursued initiatives all the way from mathematical modelling to ethics and from education to fundraising. Below there is a list of all the aspects of our project with respective icons and a brief description about each endeavour. These icons are present throughout our wiki so you can keep track of which aspect of our project you are learning about.


For the wetlab, we explored the concept of Quorum Sensing, a cell-to-cell communication process used by bacteria. We constructed the V. harveyi AI-2 signalling system in E. coli. This system allows for the fined tuned coordination of bacterial behaviour in that bacterial colonies are able to act as single entities.



Using mathematical modeling, we are developing models that allow us to predict and evaluate the signalling system's behaviour, thus characterizing the circuit. We have chosen to approach modelling of our system through membrane computing and Matlab.

Beyond the development of a communication system between bacteria, we have also explored and demonstrated methods of communication with the public. For synthetic biology to flourish, there needs to be meaningful discourse between individuals, whether within the synthetic biology community, with other disciplines, or with the public. This is especially important when discussing the ethical issues that arise from synthetic biology. Our team is examining multiple aspects of concerns regarding synthetic biology, and looking at novel, interesting ways to communicate the results of our exploration to the public.

For meaningful discourse to occur, all participants require a working knowledge of the concepts they are discussing. Education is a fundamental aspect of providing and spreading such information. This year, our team is using multiple approaches in spreading information to the public regarding iGEM and synthetic biology, as well as providing educational opportunity to students. Such outreach programs include our High-School workshop. We are also developing an educational tool for teaching synthetic biology within the virtual program Second Life. In Second Life, we are creating the means to teach the potentials of synthetic biology, the assembly of genetic circuits, and molecular biology lab procedures. We hope that our virtual learning environment will allow for the training of future iGEMers in molecular biology.



In addition to utilizing education and outreach to raise the profile of synthetic biology, our fundraising endeavors have also allowed us to create more interest in this field. Our communication with businesses in many industrial sectors allows for the discussion of the opportunities and future developments provided by synthetic biology and the potential applications of our signalling circuit. As our marketing strategies in part aid outreach in Synthetic Biology, these endeavors can also be found in the Human Practices section.

Another important aspect of communication in this competition is the availability of collaborative work, within our own team and as a community itself. Our team is made up of students from health sciences, kinesiology, and engineering; who are actively participating in interdisciplinary work. This requires the ability to communicate information to people from different backgrounds and perspectives. As well, iGEM allows us to communicate with other teams at an international scale. We hope to establish means of communication and thus cooperation with other teams in our respective projects, enhancing the iGEM experience.

The wetlab, modelling, second life, human practices, and fundraising components of our project have allowed us to establish communication at the cell, individual, and synthetic bio community levels.


LATEST NEWS
U of C iGEM team wins provincial competition, September 20th
With smiling faces and heightened team pride, the U of C brought home the aGEM trophy after placing first in the Alberta Genetically Engineered Machines (aGEM) competition, which was held in Banff from September 18th -19th. aGEM is the Alberta Genetically Engineered Machines Competition. aGEM facilitates a sense of regional spirit and gives students a chance to compete and critique each other’s work as the three Albertan teams (U of C, U of A, and U of L) prepare for the iGEM Jamboree in the fall.

For more details, click HERE.



STATS, COMMENTS & SOCIAL MEDIA


Locations of visitors to this page


Bookmark and Share

facebook flickr button rss button
youtube button twitter button stumbleupon button