Team:Imperial College London/Wetlab/Results/Thermoinduction1

From 2009.igem.org

(Difference between revisions)
(42ºC)
(42ºC)
Line 35: Line 35:
===42ºC===
===42ºC===
-
[[Image:II09_table_42deg.png]]<br>
+
[[Image:II09_table_42deg.png|650px]]<br>
<b>Table 2: Fluorescence results at 42ºC</b>
<b>Table 2: Fluorescence results at 42ºC</b>
[[Image:II09_fluor_42deg.png]]<br>
[[Image:II09_fluor_42deg.png]]<br>

Revision as of 20:23, 21 October 2009

Contents

Experiment Rationale

To investigate the behaviour of the lamda-cI thermoinducible promoter and show that when temperature is low (at 28 degrees Celsius), there is low fluorescence output. This shows that the genome deletion module is repressed. When temperature is raised to 42 degrees Celsius, fluorescence increases, indicating that the repression is lifted. We are looking at both absorbance and fluorescence data. This analysis serves to characterize the construct [http://partsregistry.org/wiki/index.php/Part:BBa_K200022 BBa_K200022], submitted by Harvard last year.

Summary of method

In order to characterize the thermoinducible promoter, absorbance (optical density) and fluoresence data were recorded over time for:

  • Cells containing the BBa_K200022 construct: The thermoinducible promoter.
  • Positive control cells: Containing the [http://partsregistry.org/Part:BBa_I13522 BBa_I13522], acting as a baseline comparison by constitutively expressing GFP.
  • Negative control cells: These contain the thermoinducible promoter on its own ( [http://partsregistry.org/Part:BBa_K098995 BBa_K098995]) with no GFP attached to it.

Analysis

Variation of the blank

Here we repeat a similar analysis to the previous part, except that this time we will account for variations in the blank for fluorescence data. However, we suspect that there has been a systematic error in the results returned by the fluorometer. The analysis brings out the data's most important features and compensates for these. All the raw data files will also be uploaded in the wiki for further details and explanations.

28 ºC

  • At this temperature, variations of the blank levels have been taken to be between 250 and 300 Fluorescent units (discarding overshoots).
  • This means that once again, fluorescence data must be normalized against different blank data values to account for this variation.

II09 blank fluorescence 28.png
Figure 1: Fluorescence variation in blank wells at 28ºC

42 ºC

  • Here, variations seem to be linear, as seen in the absorbance case so one of the causes for this may be evaporation.
  • However, they may also be due to systematic error of the fluorometer.

II09 blank fluorescence 42.png
Figure 2: Fluorescence variation in blank wells at 42ºC

Variation in fluorescence

28ºC

  • Table 1 shows the raw values for fluorescence. Again, this was done for different blank values (for more details see the raw data file)

II09 table1 28deg.png
Table 1: Fluorescence results over time at 28 ºC

  • At 28 ºC, we can clearly see that the fluorescence is repressed, relative to the constitutive promoter (positive control).
  • The blue line is low, and fluorescence output is low. Therefore, the promoter is repressing downstream genes.

II09 fluor 28deg2.png
Figure 3: Fluorescence at 28 ºC

42ºC

II09 table 42deg.png
Table 2: Fluorescence results at 42ºC II09 fluor 42deg.png

Conclusion

Mr. Gene   Geneart   Clontech   Giant Microbes