Team:Calgary/Second Life
From 2009.igem.org
(Difference between revisions)
m |
PatrickKing (Talk | contribs) |
||
Line 90: | Line 90: | ||
</div> | </div> | ||
<div class="desc"> | <div class="desc"> | ||
- | So what does iGEM have to do with Second Life? Well, the problem with doing an iGEM project at university is this: sooner or later all of the students graduate. Even those who decide to participate in an iGEM team several years in a row | + | So what does iGEM have to do with Second Life? Well, the problem with doing an iGEM project at university is this: sooner or later all of the students graduate. Even those who decide to participate in an iGEM team several years in a row have to get on with their lives sooner or later. The result is that a huge amount of time is spent educating the new year of students, and this problem can be especially acute for teams of entirely undergraduates like ours. Many of our students are in their first or second year, many have never been in a molecular biology lab before, and they've got to learn all the ropes if they want to have a hope of competing at iGEM level. |
<br><br> | <br><br> | ||
- | Ultimately, all this time spent training the next generation will pay off | + | Ultimately, all this time spent training the next generation will pay off with a generation of new scientists, the synthetic biologists. But for right now, we really just need to get all the cloning and biobrick assembly and system tests and a dozen other kinds of work done by the end of summer. |
<Br><Br> | <Br><Br> | ||
Enter Second Life. SL has gained a lot of attention for its potential as an educational platform. The most often touted feature is that SL can offer a classroom-like environment for people at any distance from one another. While the iGEM Calgary island will make an excellent hangout for idle iGEMers the world over, our focus is less on creating a classroom, and more on presenting concepts directly. We want to make it easier for new students to grasp the basics of synthetic biology by making it accessible and interactive. This is where SL's object creation and scripting facilities come into play: we can create anything we want, from molecules to cells to lab equipment, and then make it behave like the real thing. | Enter Second Life. SL has gained a lot of attention for its potential as an educational platform. The most often touted feature is that SL can offer a classroom-like environment for people at any distance from one another. While the iGEM Calgary island will make an excellent hangout for idle iGEMers the world over, our focus is less on creating a classroom, and more on presenting concepts directly. We want to make it easier for new students to grasp the basics of synthetic biology by making it accessible and interactive. This is where SL's object creation and scripting facilities come into play: we can create anything we want, from molecules to cells to lab equipment, and then make it behave like the real thing. | ||
+ | </div> | ||
+ | <div class="heading"> | ||
+ | Our Projects | ||
+ | </div> | ||
+ | <div class="desc"> | ||
+ | Our work in Second Life breaks down into three projects, each focusing on synthetic biology at from a different perspective: | ||
+ | <br><br> | ||
+ | The Synthetic Domain is a vision of the future of synthetic biology. It is a collection of futuristic organisms, each with useful properties and abilities included in their design. We have cells to produce your vitamins for you, cells to fight off pathogens for you, and more. The Synthetic Domain is an introduction to the potential of synthetic biology for everyone, and serves as a source of inspiration for young scientists. | ||
+ | <br><br> | ||
+ | The Biobrick Simulator takes DNA, proteins, other molecules from the core of the registry of biological parts, and simulates their behaviours. Instead of trying to work out how all the regulation in common systems work on paper, students can quickly and easily build the systems online to get the hang of it. The simulator also includes a level based introduction to the most common kinds of biobrick parts, designed to make the introduction to iGEM easier. | ||
+ | <br><br> | ||
+ | The Virtual Lab provides an interactive introduction to the various techniques involved in the application of synthetic biology and allows for basic instruction through a lab through use of lab missions. The lab activities or mission incorporate procedures such as DNA extraction, bacterial transformation, and restriction digest, which are common practices during the process of constructing biological circuits that may be put to use within bacteria. These activities are separated by difficulty, time and there are also opportunities to apply what is learned from these activities to non-structured sections of the lab. It is meant to be understandable to high school students, who may apply their newly obtained knowledge after they have had a chance to grasp basic concepts of molecular and synthetic biology in the other domains of the island. It may also serve as a successful introduction to lab procedures for future iGEM team members. | ||
<br> | <br> | ||
+ | </div> | ||
</td> | </td> | ||
</tr> | </tr> |
Revision as of 21:46, 31 July 2009
UNIVERSITY OF CALGARY