Team:Imperial College London

From 2009.igem.org

(Difference between revisions)
Line 83: Line 83:
<div id="II09_content_wrapper">
<div id="II09_content_wrapper">
<div id="II09_content_boxtewop"><img src="https://static.igem.org/mediawiki/2008/a/a1/Tudelft_content_top.png" width="572"></div>
<div id="II09_content_boxtewop"><img src="https://static.igem.org/mediawiki/2008/a/a1/Tudelft_content_top.png" width="572"></div>
-
<div id="II09_content"></html>
+
<div id="II09_content">
 +
<img src="http://openwetware.org/images/e/e8/II09_Encapsulator.png" width="20%" align="right"></html>
 +
===Creating ‘The E.ncapsulator’: in situ manufacture and oral delivery of human biopharmaceuticals===
-
==Content==
+
A major, yet unsolved, challenge in the pharmaceutical industry involves overcoming the harsh acidic environment of the stomach in order to deliver proteins to the gut. This year the Imperial College iGEM team has decided to tackle this problem by developing an innovative, self-contained drug fabrication and delivery system. In our 'E.ncapsulator', Escherichia coli will be engineered not only to efficiently manufacure important biopharmaceuticals, but also to coat and protect protein based drugs until release in the small intestine.
-
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc consectetur magna nec ipsum eleifend hendrerit. Aenean suscipit gravida ipsum eget mattis. Aliquam mollis pellentesque placerat. Donec vel justo fermentum nunc viverra egestas vitae a est. Cras nec libero eu urna viverra viverra. Morbi justo eros, cursus at tempor ut, gravida vitae odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Suspendisse potenti. Vestibulum consectetur pretium ipsum sed ultrices. Proin placerat lectus sed leo facilisis quis rutrum mi malesuada. Etiam semper sem vulputate nibh facilisis blandit.
+
-
Ut tempus sollicitudin metus sed ullamcorper. Suspendisse eu pulvinar sapien. Phasellus viverra ultrices nisl, interdum iaculis nibh sollicitudin eu. Maecenas ante urna, dictum eget cursus at, congue consequat sapien. Quisque id porttitor lorem. Phasellus lacinia urna at ligula eleifend lobortis. Aliquam augue purus, elementum et ultricies non, sagittis ornare mi. Nulla vestibulum eleifend urna, id ultricies lacus adipiscing at. Sed auctor convallis magna at tristique. Integer risus odio, tempor vitae rutrum eget, porttitor id lorem. Donec eu enim arcu. Aliquam eu mauris sapien, a viverra sapien. Quisque luctus ligula nisi. Sed at velit turpis. Vestibulum lacinia adipiscing eleifend. Nulla ac turpis id tortor viverra semper eget eget ipsum.
 
-
Praesent dapibus convallis ante eget interdum. Quisque vel pretium magna. Nullam eget dapibus orci. Lorem ipsum dolor sit amet, consectetur adipiscing elit. In in metus eu elit auctor fringilla eget ut justo. Nunc nec lacus enim, ultricies scelerisque lorem. Morbi consectetur gravida rhoncus. Fusce elementum ornare felis, quis dapibus ante accumsan eget. Suspendisse eleifend posuere varius. Maecenas nulla nibh, ornare dictum imperdiet nec, vehicula vel arcu. Phasellus adipiscing ullamcorper bibendum. Sed interdum ipsum lorem, eu viverra sapien. Etiam quis ipsum justo, vel dictum velit.  
+
Furthermore, in order to create E.ncapsulator tablets for oral delivery, there has been much focus on designing and engineering a number of modules for implementation in <i>E.coli</i>. The modularity that is central to our project will be evident in the areas of protein drug production, self-encapsulation and genomic neutralisation. Utilising the <i>E.coli</i> bacterium, we are creating a re-usable chassis that will allow the development of a range of biopharmaceuticals to be delivered to the gut. Our E.ncapsulator is therefore intended as an elegant solution to, not one, but a range of human ailments and conditions, which cannot currently be successfully treated by oral drugs.<br>
 +
 
 +
 
 +
The first module involves engineering <i>E.coli</i> to synthesise the protein drug of interest to a tuneable threshold. Once accomplished, activation of module two initiates the encapsulation phase, in which <i>E.coli</i> coats itself in a protective layer of colanic acid to form the E.ncapsulator. This protective capsule is what shields the biopharmaceutical against the harsh acidic environment of the stomach. The third module, genomic neutralisation, is composed of a ‘suicide trigger’ mechanism that destroys the genetic material of the bacteria. Finally, once in the small intestine, the capsule will be degraded, thereby releasing the designed biopharmaceutical to the gut micro biota where it can carry out its intended function.<br>
 +
 
 +
 
 +
The self-encapsulation of a synthetic biology chassis is new to iGEM and represents a completely novel and innovative approach to biopharmaceutical design, manufacture and delivery. Throughout the project we have followed an engineering approach that incorporates modular design, detailed modelling and simulation as well as systematic integration. Using such an approach, we are hopeful that the E.ncapsulator will be coming soon to a Pharmacy near you!<br>
<html>
<html>

Revision as of 08:49, 28 August 2009

Creating ‘The E.ncapsulator’: in situ manufacture and oral delivery of human biopharmaceuticals

A major, yet unsolved, challenge in the pharmaceutical industry involves overcoming the harsh acidic environment of the stomach in order to deliver proteins to the gut. This year the Imperial College iGEM team has decided to tackle this problem by developing an innovative, self-contained drug fabrication and delivery system. In our 'E.ncapsulator', Escherichia coli will be engineered not only to efficiently manufacure important biopharmaceuticals, but also to coat and protect protein based drugs until release in the small intestine.


Furthermore, in order to create E.ncapsulator tablets for oral delivery, there has been much focus on designing and engineering a number of modules for implementation in E.coli. The modularity that is central to our project will be evident in the areas of protein drug production, self-encapsulation and genomic neutralisation. Utilising the E.coli bacterium, we are creating a re-usable chassis that will allow the development of a range of biopharmaceuticals to be delivered to the gut. Our E.ncapsulator is therefore intended as an elegant solution to, not one, but a range of human ailments and conditions, which cannot currently be successfully treated by oral drugs.


The first module involves engineering E.coli to synthesise the protein drug of interest to a tuneable threshold. Once accomplished, activation of module two initiates the encapsulation phase, in which E.coli coats itself in a protective layer of colanic acid to form the E.ncapsulator. This protective capsule is what shields the biopharmaceutical against the harsh acidic environment of the stomach. The third module, genomic neutralisation, is composed of a ‘suicide trigger’ mechanism that destroys the genetic material of the bacteria. Finally, once in the small intestine, the capsule will be degraded, thereby releasing the designed biopharmaceutical to the gut micro biota where it can carry out its intended function.


The self-encapsulation of a synthetic biology chassis is new to iGEM and represents a completely novel and innovative approach to biopharmaceutical design, manufacture and delivery. Throughout the project we have followed an engineering approach that incorporates modular design, detailed modelling and simulation as well as systematic integration. Using such an approach, we are hopeful that the E.ncapsulator will be coming soon to a Pharmacy near you!

Mr. Gene   Geneart   Clontech   Giant Microbes