Team:Heidelberg

From 2009.igem.org

Revision as of 14:08, 20 October 2009 by Yreis (Talk | contribs)

Design your own promoter

Here we present one innovating approach to synthesize synthetic promoters: a database that predicts the position of conserved promoter binding sequences. We coded an easy to use interface that is available for public use.

HEARTBEAT: Start Design

Mission 2009:
mammalian biobricks

Mammalian synthetic biology has huge potential, but it is in need of new standards and of systematic construction of comprehensive part libraries. Learn more about our new mission on the project page.

Go To Project Page

Mission accomplished

We developed two novel, ''in silico'' guided methods for the rational construction of synthetic promoters and combined them with our targeted fluorescent protein tags. View our interactive abstract and get an overview of the achievements of our team.

View Graphical Abstract

iGEM Heidelberg Mission 2009: Spybricks

The Heidelberg 2009 team attempts to take Synthetic Biology a step further by introducing novel concepts for the work with mammalian cells, defining Synthetic Mammalian Biology (SMB). We are the first-ever team at iGEM trying to systematically develop a BioBrick library for use in mammalian cells. Being the first team of Heidelberg's "SMB initiative", we emphasize the central position of gene regulation. Our team's work therefore focused on synthetic mammalian promoters. We provide the foundations of a methodical library of such promoters, together with novel standards for their characterization. We have developed an ''avant-garde'' method for the synthesis of mammalian promoters, and a bioinformatical model predicting such promoters which we test ''in vivo''. ⇒ Project Abstract

Team

Thirteen students and nine advisers are working on this four month project. We split up into several subgroups whose focus and results you can follow on the Notebook and Project pages. If you want to know more about the subgroups and the people involved, meet us on our Team page and let's get to know each other better at the Jamboree in Boston.

HEARTBEAT

As one of the most important approaches to synthesize synthetic promoters we developed a database that predicts the position of conserved promotor binding sequences. These sequences were identified, analyzed and we coded an easy to use interface that is available for public use.

Notebook

What's about documentation? You will find the entire progress of the project and all the important steps on our Notebook page. The Notebook is divided into the individual subgroups.

Parts

Our team submits a library of well characterized and standardized promoters and sensors for eukaryotic cells. We will also contribute the first eucaryotic standart chassis for iGem featuring standardized genome integration sites.

Sponsors

We thank our great sponsors, who supported us financially and made this project a success. Go here to find out more about them.

The Team

This year 13 students started the Heidelberg iGEM team.

Heidelberg Jamboree Blog

We will report all important news during the jamboree right away from Cambridge here.

The iGEM idea

iGEM (international genetically engineered machines competition) is an international competition in synthetic biology, hosted by the MIT in Boston. The aim of this competition is to answer a basic question, Randy Rettberg, the director of iGEM once described as follows: "Can simple biological systems be built from standard, interchangeable parts and operated in living cells? Or is biology just too complicated to be engineered in this way?" The iGEM-approach to answer that question is to actually try to engineer biological systems with a proper function. Therefore more than 100 interdisciplinary student teams from all over the world, mainly consisting of undergraduate students in biology, biochemistry, engineering, informatics and mathematics, carry out different projects during the summer. These projects reach from medical applications, i.e. genetically modified bacteria used in cancer-treatment to environmental and manufacturing projects, i.e. the construction of a watch-like counter consisting of living cells. In contrast to classical genetic engineering where only one gene is transferred from organism A to organism B, synthetic biology goes forward the construction of whole new systems with a completely new function. Therefore, all iGEM-Teams get access to a gene- Database called registry, where hundreds of different genetic parts with characterized functions are available in a “plug-and-play” –like format. These parts can be simply stuck together to build functional systems. The rising number of iGEM-Teams over the last years as well as the upcoming public interest in iGEM, the iGEM-Teams’ projects and synthetic biology in general shows, that synthetic biology will for sure have a great impact in many different fields of both scientific research and every-day life.