Team:Valencia/The Town Dock


The Town Dock

In 1962, using the methods that had worked in the previous year, we obtained an additional amount of aequorin and began to study various aspects of the molecule, including its application in the measurement of calcium ions. We also wanted to know the mechanism of the luminescence reaction and the structure of the light-emitting chromophore. But our efforts to achieve these goals were soon blocked by an insuperable difficulty. When various methods were used to break down the molecules of aequorin, the first step of the reaction was always an intramolecular chemical change; so it was impossible to isolate intact chromophores. We therefore decided to postpone further study on the light-emitting mechanism.

In 1967, Ridgway and Ashley reported their observation, with the aid of microinjected aequorin, of transient Ca2+ signals in single muscle fibers of the barnacle. It was the first report on the use of aequorin in studying intracellular calcium, and it was soon followed by hundreds of papers. Because the importance of aequorin was now evident, we wanted to study the chemistry of the luminescence reaction. Although the structure of the native light-emitting chromophore seemed intractable, I thought that the structure of the chromophore after the luminescence reaction could be determined. For a structural study of the chromophore, I estimated that 100-200 mg of pure aequorin would be needed in a single experiment. About 50,000 jellyfish (2.5 tons) would be needed to produce this amount of aequorin. But to process 50,000 jellyfish in one summer, we would have to collect and cut at least 3000 of the animals each day, allowing for days of bad weather and poor fishing. This was a workload that could not be accomplished by collecting jellyfish at the lab dock and cutting ring with scissors at a rate of one ring per minute.


We resumed the jellyfish operation at Friday Harbor in the summer of 1967, not anticipating that it would continue for the next 20 years. To collect more jellyfish, we expanded our fishing ground beyond the lab dock, adding the Chevron dock (a small commercial pier), the town dock (public pier), and the shipyard (a covered boat storage), and we used a car to move around and to transport the buckets ofjellyfish. When the current carried the stream ofjellyfish far beyond the docks, we also used rowboats to collect jellyfish, a tricky activity that occasionally caused a collector to fall into very cold seawater. The Chevron dock was our favorite place during the first 2-3 years, because there was a part of it where a large number ofjellyfish would stack up on an early morning tide. We had to be careful, however, not to make noise that might awaken sleeping people on the boats.

The town dock was very small-almost nonexistentin the late ’60s; but then it was rapidly expanded. By 1975, the dock had been extended far enough into the bay to intersect with the main jellyfish stream, and it then became a highly favorable spot for fishing. Indeed, the town dock with its large sign saying “Port of Friday Harbor” became our main fishing ground, and the collection became much easier than before. We harvested jellyfish every morning and evening. The collectors were usually my wife, our son and daughter, a couple of assistants, and me. Dr. and Mrs. Johnson also helped for the first several years. Because the jellyfish are nearly transparent in seawater, they cannot easily be seen with untrained eyes. Our children were only 3-4 years old when they began collecting jellyfish with specially made short nets; they had become as efficient as an average adult by the age of 8; and through high school they continued to be great helpers in my project.

Before beginning a collection, we filled buckets about half-full with seawater and placed them strategically along the edge of pier, then gathered jellyfish until the buckets were completely full. When a dense stream of animals was passing the dock, we could collect at a rate of 5-10 jellyfish per minute. When all the buckets were filled, we poured off some water to about 80% capacity, and then covered each bucket with a plastic bag to prevent seawater from spilling during transportation. The buckets-each crammed with about 100 jellyfish in very little waterwere then packed into the trunk of a car (which could accommodate 12 buckets) and rushed to the lab. More buckets were usually transported to the lab on a Boston Whaler by one of the assistants. Once at the lab, and before any rings were cut, the jellyfish were kept in aquaria to revive. In this manner, we were able to collect an average of 3000-4000 jellyfish each day at the town dock.

El caso de las Medusas.jpg

The town dock was very good for jellyfish fishing, but there were some problems. Often we found too many boats at the dockside; this decreased the open space where we could collect jellyfish. When the loading area, located halfway along the main dock, was fully occupied, we had to carry the heavy buckets of jellyfish all the way to our car, which would be parked more than 200 yards away. The biggest problem, however, was that there were too many boat people who asked us questions. “What are you doing?” “ What are you collecting?’ “How do you use them?’ Almost every passerby felt obliged to ask us a question while we were busily collecting. Most people were satisfied by our simple reply: “These are for scientific research.” Some people persisted until they had received a complete explanation of our research.

I cannot forget a funny exchange that took place one early morning. An old lady poked her head out from the window of a small boat, looked at the jellyfish on my net, and asked me, “How do you cook them?”

I answered, “We don’t cook those jellyfish.”

She gazed at me distastefully, “Do you eat them raw?” and her head disappeared.

“No! We don’t eat them!” But my reply was too late.

Back to Discovery of Aequorin   | The Town Dock |   Go to The Jellyfish Factory

Retrieved from ""