Team:Newcastle/Characterisation
From 2009.igem.org
(→Characterization of IPTG inducable KinA sporulation trigger device) |
|||
Line 5: | Line 5: | ||
=Characterization of IPTG inducable KinA sporulation trigger device= | =Characterization of IPTG inducable KinA sporulation trigger device= | ||
- | We successfully characterized IPTG inducible | + | We successfully characterized our IPTG inducible ''kinA'' sporulation tuning device. Although Spo0A is the master regulator of sporulation in ''B. subtilis'', only an increase in phosphorylated Spo0A can trigger the sporulation(1). We achieved this scenario by artificially inducing ''kinA'' by IPTG to participate in a multicomponent phosphorelay. We used microscopy to verify our results. |
For more information about the design of this device go to our [https://2009.igem.org/Team:Newcastle/SporulationTuning sporulation tuning] page. | For more information about the design of this device go to our [https://2009.igem.org/Team:Newcastle/SporulationTuning sporulation tuning] page. | ||
- | Our synthesised device was cloned into | + | Our synthesised device was cloned into the integration vector pGFP-rrnb constructed by Dr. JW Veening. By placing our device just before the ''gfp'' CDS in the integration vector, we hoped to see GFP when we induce the device with IPTG. However for IPTG to work, we needed LacI expressed in the cells. |
When we first did our transformation for ''B. subtilis'' we forgot this link and we got similar results with cells induced with IPTG and not induced with IPTG. Obviously LacI was not present in the cells and adding IPTG did not make any difference. | When we first did our transformation for ''B. subtilis'' we forgot this link and we got similar results with cells induced with IPTG and not induced with IPTG. Obviously LacI was not present in the cells and adding IPTG did not make any difference. | ||
- | We then used a ''Bacillus subtilis'' mutant, BFS687, which has | + | We then used a ''Bacillus subtilis'' mutant, BFS687, which has pMutin4 integrated into the chromosomal DNA (2). We selected this mutant especially since it does not have any phenotype under a wide range of conditions as described in the [http://locus.jouy.inra.fr/cgi-bin/genmic/madbase/progs/madbase.operl Micado] database. Since pMutin4 has LacI gene, we were able to get LacI expressed in the cells. We successfully transformed the mutant with pGFP-rrnb carrying out kinA based sporulation rate tuning brick . ''amyE'' homologous regions in the integration vector mediated a double crossover into the chromosome. As a result of this crossover, cells lose the ''amyE'' gene and cannot break down starch. When transformed colonies are plated into starch plates, the transformed colonies that have successfully inetgrated the plasmid can be seen without any halos around them when we expose the plates to iodine. |
We then selected two transformed colonies from the starch plate and used them to induce sporulation by adding IPTG. | We then selected two transformed colonies from the starch plate and used them to induce sporulation by adding IPTG. | ||
- | To select the transformed colonies we prepared our plates with LB + Erythromycin + Chloramphenicol. Chloramphenicol was used to select pgf-rrnb transformations and Erythromycin was used to select the colonies with | + | To select the transformed colonies we prepared our plates with LB + Erythromycin + Chloramphenicol. Chloramphenicol was used to select pgf-rrnb based transformations and Erythromycin was used to select the colonies with pMutin4 intgrated. Hence, by adding these two antibiotics we made sure that we were using BFS867 mutants transformed with pgfp-rrnb integration vector containing our biobrick as an insert. |
Concentrations used to characterize our device: | Concentrations used to characterize our device: | ||
+ | |||
IPTG : 1mM | IPTG : 1mM | ||
Erythromycin :0.3ug/ml | Erythromycin :0.3ug/ml | ||
Line 25: | Line 26: | ||
===Experiment Overview=== | ===Experiment Overview=== | ||
- | Each 10ml of overnight cultures was split into two flasks with 60ml of LB+Em+CHL. Every half an hour we meaured the optical density of the cells to get the growth curve of the cells. We also stored samples at each time point. We added IPTG after an hour we started to our experiments. We also used wild type ''B. subtilis'' and wild type cells transformed with pgfp-rrnb as the controls. | + | Each 10ml of overnight cultures was split into two flasks with 60ml of LB+Em+CHL. Every half an hour we meaured the optical density of the cells to get the growth curve of the cells. We also stored samples at each time point. We added IPTG after an hour we started to our experiments. We also used wild type ''B. subtilis'' and wild type cells transformed with pgfp-rrnb as the negative and positive controls respectively. |
- | After time point 5, before | + | After time point 5, before the cells reached stationary phase, we used the samples from time point 1 and time point 5 and prepared them for microscopy by resuspending the cells in SMM medium. |
===Growth Curves=== | ===Growth Curves=== |
Revision as of 20:29, 21 October 2009
Characterization of IPTG inducable KinA sporulation trigger device
We successfully characterized our IPTG inducible kinA sporulation tuning device. Although Spo0A is the master regulator of sporulation in B. subtilis, only an increase in phosphorylated Spo0A can trigger the sporulation(1). We achieved this scenario by artificially inducing kinA by IPTG to participate in a multicomponent phosphorelay. We used microscopy to verify our results.
For more information about the design of this device go to our sporulation tuning page.
Our synthesised device was cloned into the integration vector pGFP-rrnb constructed by Dr. JW Veening. By placing our device just before the gfp CDS in the integration vector, we hoped to see GFP when we induce the device with IPTG. However for IPTG to work, we needed LacI expressed in the cells.
When we first did our transformation for B. subtilis we forgot this link and we got similar results with cells induced with IPTG and not induced with IPTG. Obviously LacI was not present in the cells and adding IPTG did not make any difference.
We then used a Bacillus subtilis mutant, BFS687, which has pMutin4 integrated into the chromosomal DNA (2). We selected this mutant especially since it does not have any phenotype under a wide range of conditions as described in the [http://locus.jouy.inra.fr/cgi-bin/genmic/madbase/progs/madbase.operl Micado] database. Since pMutin4 has LacI gene, we were able to get LacI expressed in the cells. We successfully transformed the mutant with pGFP-rrnb carrying out kinA based sporulation rate tuning brick . amyE homologous regions in the integration vector mediated a double crossover into the chromosome. As a result of this crossover, cells lose the amyE gene and cannot break down starch. When transformed colonies are plated into starch plates, the transformed colonies that have successfully inetgrated the plasmid can be seen without any halos around them when we expose the plates to iodine.
We then selected two transformed colonies from the starch plate and used them to induce sporulation by adding IPTG.
To select the transformed colonies we prepared our plates with LB + Erythromycin + Chloramphenicol. Chloramphenicol was used to select pgf-rrnb based transformations and Erythromycin was used to select the colonies with pMutin4 intgrated. Hence, by adding these two antibiotics we made sure that we were using BFS867 mutants transformed with pgfp-rrnb integration vector containing our biobrick as an insert.
Concentrations used to characterize our device:
IPTG : 1mM Erythromycin :0.3ug/ml Chloramphenicol: 5ug/ml
Experiment Overview
Each 10ml of overnight cultures was split into two flasks with 60ml of LB+Em+CHL. Every half an hour we meaured the optical density of the cells to get the growth curve of the cells. We also stored samples at each time point. We added IPTG after an hour we started to our experiments. We also used wild type B. subtilis and wild type cells transformed with pgfp-rrnb as the negative and positive controls respectively.
After time point 5, before the cells reached stationary phase, we used the samples from time point 1 and time point 5 and prepared them for microscopy by resuspending the cells in SMM medium.
Growth Curves
Shows Wild type B. subtilis, WT. B. Subtilis transformed with pgfp-rrnb, and BFS867 mutant transformed with pgfp-rrnb. (+ sign represents IPTG added) | |
Growth curve of the mutant with and without IPTG | |
Microscopy results
At time point 1, colonies did not have much Gfp and spores. When it is looked to the sample taken at time point 5, spores inside the mother cells can be noticed. As it can be seen there are many spores. Original copy of KinA also works and make the cells sporulate. However as it can be seen, there are lots of cells with Gfp about to sporulate. Hence we can conclude that the sporulation was mainly triggered by our device.
- Fujita, M. and R. Losick (2005). "Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A." Genes & Development 19(18): 2236-2244.
- Retrieved 20/10/2009, from http://bacillus.genome.jp/bsorf_mutant_list/Page12.htm
News
Events
- 20 – 21 June 2009 - Europe workshop (London)
- 23 – 24 June 2009 - UK iGEM meetup (Edinburgh)
- 23 October Practice Presentation (Newcastle)
- 23 October T-shirts are ready
- 27 October Practice Presentation (Sunderland)
- 27 October Poster is ready
- 30 October – 2 November 2009 - Jamboree (Boston)
Social Net
- Newcastle iGEM Twitter
- [http://www.facebook.com/home.php#/group.php?gid=131709337641 Newcastle on Facebook]
- [http://www.youtube.com/user/newcastle2009igem Newcastle Youtube Channel]