Team:TUDelft/Modeling Cascade
From 2009.igem.org
(Difference between revisions)
(→Parameter Sweeps) |
|||
Line 68: | Line 68: | ||
|rowspan="2"| | |rowspan="2"| | ||
<gallery> | <gallery> | ||
- | Image: | + | Image:2d leakage lamp.png|'''1111 :''' parameter vs parameter |
- | Image: | + | Image:3d alpha2 vs alpha4.png|'''1111 :''' parameter vs parameter |
- | Image: | + | </gallery><gallery> |
+ | |||
+ | Image:3d Clamp vs alpha4.png|'''1111 : ''' parameter vs parameter | ||
+ | |||
+ | Image:3d CpLac vs Clamp.png|'''111 : ''' parameter vs parameter | ||
</gallery><gallery> | </gallery><gallery> | ||
- | Image: | + | Image:3d CpLac vs CpTet.png|'''1111 : ''' parameter vs parameter |
- | Image: | + | Image:3d CpTet vs alpha2.png|'''111 : ''' parameter vs parameter |
+ | |||
+ | </gallery><gallery> | ||
- | Image: | + | Image:3d CpTet vs Clamp.png|'''1111 : ''' parameter vs parameter |
+ | Image:3d leakage a2 vs a4.png|'''111 : ''' parameter vs parameter | ||
</gallery> | </gallery> |
Revision as of 17:02, 29 September 2009
Modeling the Transcriptional Cascade
A full description of the Transcriptional Cascade can be found here.
ODEs
The kinetic equations were written out in a Matlab script for both transcription and translation.
Symbol | Definition |
kIPTGin, kIPTGout | rate constants |
k50IPTG, k50LacI, k50TetR, k50CI | dissociation constants |
dmRNA | mRNA degradation rate |
dTetR, dCI, dRFP, dGFP | protein degradation rates |
apLac, apTet, aλp | transcription leakage (%) |
cpLac, cpTet, cλp | maximum transcription rates |
α1, α2, α3, α4 | translation rates |
nIPTG, nLacI, nTetR, nCI | Hill coefficients |
[X]mRNA | concentration of X mRNA |
Sensitivity
Parameter | Normalized Sensitivity |
kIPTGin, kIPTGout | |
k50IPTG, k50LacI, k50TetR, k50CI | |
dmRNA | |
dTetR, dCI, dRFP, dGFP | |
apLac, apTet, aλp | |
cpLac, cpTet, cλp | |
α1, α2, α3, α4 | |
nIPTG, nLacI, nTetR, nCI | |
[X]mRNA |
Parameter Sweeps
|
Stability
Jacobian
|
Design Recommendations
Based on the results of the simulations, a series of recommendations were given to the delay team to aid them in choosing parts which would maximize the delay time.
- Significant transcription leakages greatly shorten the delay time. Attempt to minimize leakages. Leakage of λp is a far bigger problem than pTet leakage.
- Use a weak promoter and a weak RBS on the last stage (λp) of the cascade.
- A weak pLac promoters is favorable.
- A strong pTet promoter is favorable.
- A strong RBS on CI gene is favorable.
- A weak RBS on TetR gene is favorable.
- A weak RBS on the endonuclease is favorable although a strong RBS can be used for the GFP gene.
- When choosing RBS and promoter strengths avoid the red areas on the stability plots.