|
|
(35 intermediate revisions not shown) |
Line 2: |
Line 2: |
| | | |
| {{Template_HD_3}} | | {{Template_HD_3}} |
- | <html><body id="project">
| |
| | | |
- | <style type="text/css"> | + | <html><body id="project" onload="setPageSize()"> |
| | | |
- | h2 {padding: 10px 20px;
| |
- | font-size: 18px;
| |
- | color: eb8300;
| |
- | font-decoration: none;
| |
- | font-weight: bold;}
| |
- | .gallery{ width: 640px;
| |
- | }
| |
- | .gallery p {padding: 0 20px;
| |
- | text-align: justify;
| |
- | font-size: 12px;}
| |
- | .gallery h3 {padding: 10px 20px;
| |
- | font-size: 18px;}
| |
- | .gallery img {margin: 0 15px 15px 17px;
| |
- | border-color: #FFF;
| |
- | border-style:solid;
| |
- | text-align:center;
| |
- | float:left;}
| |
| | | |
- | #super_main_wrapper {
| |
- | position:absolute; left:0px; top:227px;
| |
- | margin-bottom: 30px;
| |
- | width: 975px;
| |
- | align: center;
| |
- | background-color: #ede8e2;
| |
- | }
| |
- | #super_main_wrapper * img, #super_main_wrapper * * img {border-color: #FFF;
| |
- | border-style:solid;
| |
- | text-align:center;}
| |
- | #SubWrapper {width: 647px;
| |
- | float: left;
| |
- | margin-left: 3px;
| |
- | margin-top: 3px;
| |
- | background-color: #ede8e2;}
| |
- | #SubWrapper * p, #SubWrapper p {padding: 0 20px;
| |
- | text-align: justify;
| |
- | font-size: 12px;}
| |
- | #SubWrapper * h3 ,#SubWrapper * ul, #SubWrapper h3, #SubWrapper ul{padding: 10px 20px;
| |
- | font-size: 18px;}
| |
- | #news {width:320px;
| |
- | height: 1300px;
| |
- | margin-top: 3px;
| |
- | float: left;
| |
- | background-color: #d8d5d0;}
| |
- | #news p {padding: 0 20px;
| |
- | text-align: justify;
| |
- | font-size: 12px;}
| |
- | #news h3 {padding: 10px 20px;
| |
- | font-size: 18px;}
| |
- | .clear {clear:both;}
| |
- | </style>
| |
| | | |
| <div id="super_main_wrapper"> | | <div id="super_main_wrapper"> |
| <div id="SubWrapper"> | | <div id="SubWrapper"> |
- | <!--
| + | <a name="top"></a> |
- | <h2>Project Abstract</h2> | + | <center> |
- | <p><b>English</b><br> | + | <img src="https://static.igem.org/mediawiki/2009/5/5d/HD_GraphicalAbstract_600.jpg"/> |
- | Early efforts in synthetic biology have focused on using prokaryotes as an engineering chassis, whereas novel developments indicate a shift towards an eukaryotic synthetic biology. The value of eukaryotic synthetic biology is manifold: in medical research, it will accomplish new ways of gene therapy; in plant biotechnology, it can contribute to the struggle for a sustainable food and energy solution. Finally, the ability to assemble and analyze complicated biological systems step by step will allow a revolutionary approach to fundamental research.
| + | </center> |
- | Establishing new standards for iGEM, the Heidelberg 2009 team will be concerned with developing ways for measuring promoters in mammalian cells, a default chassis and a first evaluation of the recently postulated BioBrick beta proposal 2 (Tom Knight).
| + | <br> |
- | Considering the importance of controlling gene expression, our team's work will focus on natural and synthetic mammalian promoters. Our vision is to provide the synthetic biology community with a methodical library of such promoters (with different output strength and sensitivity to different regulatory proteins) and a model which can provide guidance for the development of further synthetic promoters. Our efforts will therefore, from the very beginning, equally entail bioinformatics and wet lab work.
| + | <p>For higher resolution: <a href="https://static.igem.org/mediawiki/2009/a/a6/HD_GraphicalAbstract_high.jpg">Download Graphical Abstract</a></p> |
- | As an early application for such a promoter library, our team will attempt to develop an assay which can monitor the activity of several pathways in one cell. Such an assay is of high value for biological research as it can be applied for studying stem cell differentiation, tumor formation, apoptosis and autophagy as well as drug response. Our team will apply the assay towards testing several anti-cancer drugs. A computer-based model will lay the foundations for future work. It will help us to build a logic that integrates the promoter activities and will allow us to predict the possibilities of a single functional output.<br><br></p>
| + | <br> |
| + | <h2>Project Highlights </h2> |
| + | <ul> |
| + | <li>We are able to predict functional mammalian promoter sequences <a href="https://2009.igem.org/Team:Heidelberg/HEARTBEAT_database#In_vivo_test_of_predicted_sequences_shows_that_functional_promoter_can_be_predicted_by_HEARTBEAT">(go there)</a></li> |
| + | <li>We have created a functional biochemical synthesis method for the generation of promoters libraries <a href="https://2009.igem.org/Team:Heidelberg/Project_Synthetic_promoters#Results">(go there)</a></li> |
| + | <li>We have developed novel standards for measurement of promoters in mammalian cells <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement">(go there)</a></li> |
| + | <li>4 RFCs, well characterized parts <a href="http://partsregistry.org/cgi/partsdb/pgroup.cgi?pgroup=iGEM2009&group=Heidelberg">(Parts)</a> , <a href="http://openwetware.org/wiki/The_BioBricks_Foundation:RFC#BBF_RFC_41:_Units_for_Promoter_Measurement_in_Mammalian_Cells">(RFCs)</a></li> |
| + | <li>First attempts to create a eukaryotic standard chassis <a href="https://2009.igem.org/Team:Heidelberg/stables">(Stable Cell Line)</a> </li> |
| + | <li>Multicolor and multi-functional output devices for promoter characterization <a href="https://2009.igem.org/Team:Heidelberg/Project_SaO">(Output)</a> </li> |
| + | <li>Isolation and characterization of natural promoters <a href="https://2009.igem.org/Team:Heidelberg/Project_Natural_promoters">(Natural Promoters)</a> </li> |
| | | |
- | <p><b>German</b><br>
| + | </ul> |
- | Während sich die anfänglichen Bestrebungen der Synthetischen Biologie auf prokaryotische Systeme beschränkten, zeichnet sich gegenwärtig ein Wandel hin zu eukaryotischen Systemen ab. Die synthetische Biologie in Eukaryoten kann von vielseitigem Nutzen sein: im Bereich der medizinischen Forschung könnten neuen Ansätzen in der Gentherapie entwickelt werden; in der grünen Biotechnologie wird die Synthetische Biologie zu einer nachhaltigen Lösung der weltweiten Energie- und Nahrungsprobleme beitragen. Letztendlich wird die Möglichkeit komplexe künstliche biologische Systeme zu erschaffen und zu analysieren einen revolutionären Ansatz in der Grundlagenforschung darstellen. Um neue Standards zu etablieren, wird das diesjährige iGEM Team Heidelberg sich mit der Einführung von neuen Messmethoden für Promotoren in Säugerzellen und mit der Entwicklung einer Standard-Zelllinie beschäftigen. Darüber hinaus werden wir eine erste Evaluation des kürzlich von Tom Knight postulierten BioBrick Beta Proposal 2 Standard durchführen. Eine kontrollierbare Genexpression ist essenziell in vielen Bereichen der synthetischen Biologie. Aus diesem Grund setzt sich unser Team die Entwicklung von natürlichen und synthetischen Promotoren zum Ziel. Unser Beitrag zur internationalen Gemeinschaft der synthetischen Biologie wird eine systematische Promotorbibliothek sein (mit verschiedenen Stärken und verschiedener Sensitivität gegenüber Transkriptionsfaktoren bzw. Signalwegen). Dafür werden wir ein Modell entwickeln, welches es uns erlaubt solche synthetischen Promotoren herzustellen. Als eine erste Anwendung für eine derartige Promotorbibliothek werden wir versuchen einen Assay zu entwickeln, welcher die Aktivität von mehreren Signalwegen in einer Zelle visualisieren kann. Ein solcher Assay ist für die biowissenschaftliche Forschung von höchster Bedeutung, da mit ihm Prozesse wie Stammzelldifferenzierung, Tumorentstehung, Apoptose und Autophagie, charakterisiert und identifiziert werden können, als auch physiologische Antworten von Zellen auf Medikamente.<br><br></p>
| + | |
| | | |
- | <p><b>Japanese/日本語</b><br> | + | <h2>Project abstract </h2> |
- | 合成生物学は当初、バクテリアなどの原核生物を基礎シャシーとする分子システムの設計・生成に重点を置いていた。しかし最前線の合成生物学の分野における研究活動は真核生物を新たなる目標に掲げ、生命についての理解をより深めようとしている。真核生物を用いた生物工学の可能性は計り知れない。それは医学研究では新たなる遺伝子治療の方法を切り開き、植物バイオテクノロジーの分野では全世界におけるエネルギー問題及び食料危機を解決する糸口になるだろう。もちろん、応用生物学としてのバイオテクノロジーは近年、めざましい発展を遂げているが、特に評価に値するのは、生物学という分野内にある基礎生物学としてのバイオテクノロジーの意味だろう。生命という複雑かつ魅力的なシステムを一歩一歩解明していくということは遺伝子工学や分子生物学にとっても、今までにない改革的な取り組みである。<br>
| + | |
- | iGEMコミュニティに新たなる測定基準を確立するため、われわれ2009年度のチーム・ハイデルベルグ(iGEM TEAM HEIDELBERG 09)は真核生物、特にヒトを含む哺乳類の細胞をターゲットとしたプロジェクトを提案します。この夏、チーム・ハイデルベルグのメンバー13人は真核生物用の標準シャシーの生成とバイオテクノロジー研究に適した新たな(ヒト)細胞株の培養を目指し、さらには近年トム・ナイト(Tom Knight)により提案された新しいバイオブリック(BioBrick beta proposal 2, BBb)の評価を目標に、マサチューセッツ工科大学でのジャンボリー(Jamboree)に望みます。<br>
| + | |
- | 細胞内の遺伝子発現はとても精密にコントロールされている。その中でも特に重要性が高いのはプロモーターである。そのためわれわれのプロジェクトでは自然な、そして生成されたプロモーターに重点が置かれている。われわれのビジョンは、そういった(様々な強度を持ち、様々な特定の転写因子と結合する)プロモーター、そして生成技術を含むライブラリを確立させ、なおかつさらなる合成プロモーターのデザインと開発の手引きとなるモデルを作成することにある。そのため、当初から生物情報学(バイオインフォマティクス)と分子生物学の両方はこのプロジェクトにとって必要不可欠である。<br>
| + | |
- | 合成プロモーターライブラリの近い将来の応用として、一つの細胞内にて同時に幾らかのシグナル伝達経路を観察・分析するメソッドを開発します。このような分析技術は生命科学においてとても価値あるものになるでしょう。なぜなら、それは幹細胞の分化、発癌現象、アポトーシスや自食(オートファジー)などなどとても多様な応用が利くからです。
| + | |
- | これに並行して、チーム・ハイデルベルグはコンピューターによるシミュレーションシステムを将来の研究の基礎として開発します。それは様々なシグナル、そしてプロモーターの強度を集積、処理し、それに対する細胞機能の反応を予測します。
| + | |
- | <br><br></p>
| + | |
| | | |
| + | <p style="font-size:4mm;" align="justify"> |
| + | <a href="https://2009.igem.org/Team:Heidelberg/Project_German">(German)</a></li><br> |
| + | Synthetic biology in mammalian systems will accelerate the pace of medical and fundamental research. Despite its huge potential, this field of <a href="https://2009.igem.org/Team:Heidelberg/Project_Introduction"><span style="font-size:6mm;">synthetic mammalian biology</span></a> is still in its infancy. Therefore, we want to lay foundations for the methodical usage of mammalian cells as chassis systems. For this purpose, two premises must be met: first, a mature cloning standard must be defined and standardized measurement protocols must be developed to ensure modularity and comparability of BioBrick constructs. Second, a comprehensive collection of biological parts and devices must be manufactured. </p> |
| | | |
- | <p><b>Irani</b><br> | + | <p style="font-size:4mm;" align="justify">A <span style="font-size:6mm;">cloning standard</span> for mammalian BioBrick constructs has not yet been established as there are virtually no mammalian parts in the Registry up to now. We therefore analyzed all standards postulated so far and propose the BioBrick <a href="http://dspace.mit.edu/handle/1721.1/45139 ">BB_2 proposal</a> (Tom Knight) for future work with mammalian parts. </p> |
| | | |
- | اوایل تلاش ها در زیست شناسی مصنوعی را در مورد استفاده از پروکاریوتها به عنوان شاسی مهندسی متمرکز بود ، در حالی که رمان نشان می دهد تحولات به سمت تغییر مکان زیست شناسی یوکاریوتی مصنوعی. ارزش زیست شناسی مصنوعی یوکاریوتی چند برابر شده است : در پژوهش های پزشکی ، این روش های جدید درمان ژن ؛ انجام در بیوتکنولوژی گیاهی ، می تواند به مبارزه برای مواد غذایی سازگار با محیط زیست و انرژی راه حل کمک می کنند. در نهایت ، توانایی جمع آوری و تجزیه و تحلیل سیستم های پیچیده بیولوژیک گام به گام اجازه خواهد داد که یک رویکرد انقلابی برای پژوهش های بنیادین دارد.
| + | <p style="font-size:4mm;" align="justify">The standardized <span style="font-size:6mm;">characterization</span> of eukaryotic parts and devices is very challenging. We have developed standardized procedures for comparable <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement">measurements</a> of promoter strength by transient transfection in mammalian cell lines. However, since mammalian cells, unlike bacteria and yeast, do not propagate plasmids, they will need to be stably transfected for an optimized characterization. To meet this requirement we created a preliminary <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement#A_stable_cell_line_for_promoter_measurement">cell line</a> which includes FRT sites in its genome enabling stable transfections at defined sites. </p> |
- | ایجاد استاندارد جدید برای iGEM ، هایدلبرگ یدلایمخیرات 2009 با تیم در حال توسعه راه های اندازه گیری برای خود مروج در سلول های پستانداران نگران باشد ، شاسی پیش فرض و اولین ارزیابی از طرح پیشنهادی که اخیرا بدیهی شمرده BioBrick بتا 2 (تام نایت).
| + | |
- | با توجه به اهمیت کنترل بیان ژن ، کار گروهی ما را در خود مروج طبیعی و مصنوعی پستانداران متمرکز خواهد بود. دیدگاه ما این است که جامعه را فراهم زیست شناسی مصنوعی با یک کتابخانه methodical از خود مروج چنین (با خروجی مختلف مقاومت و حساسیت به پروتئین های مختلف نظارتی) و یک مدل که می تواند راهنمایی برای توسعه بیشتر مروج مصنوعی ارائه می کنند. تلاش های ما خواهد شد بنابراین ، از همان ابتدا ، به همان اندازه مستلزم تحقیقات زیستی و کار آزمایشگاه مرطوب.
| + | |
- | به عنوان یک برنامه اولیه برای چنین کتابخانه پروموتور ، تیم ما تلاش خواهد کرد که می تواند سنجش فعالیت مسیرهای متعددی در یک سلول نظارت به منظور توسعه. چنین است از سنجش ارزش بالا برای تحقیقات بیولوژیکی به عنوان آن می تواند برای تحصیل در رشته های بنیادی تمایز سلول ، تشکیل تومور ، آپوپتوز و autophagy و همچنین پاسخ به مواد مخدر بکار گرفته شود. تیم ما برای سنجش نسبت به آزمایش چندین داروهای ضد سرطان اعمال می شود. کامپیوتر مبتنی بر مدل خواهد بنیادهای غیر متخصص برای کار در آینده. به ما کمک خواهد کرد برای ساختن منطق که هماهنگسازی فعالیت های ترویج و اجازه خواهد داد که ما برای پیش بینی امکانات خروجی تک عملکردی است.
| + | |
- | iGEM (بین المللی مهندسی ژنتیک مسابقه ماشین آلات) است در رقابت های بین المللی زیست شناسی مصنوعی ، توسط دانشگاه فنی ماساچوست در بوستون میزبان. هدف از این مسابقه است برای پاسخ به یک سوال اساسی ، رندی Rettberg ، مدیر iGEM یک بار به عنوان شرح زیر می باشد : "آیا ساده زیستی را از سیستم های استاندارد ، قطعات قابل تعویض ساخته شده است و عمل در سلولهای زنده؟ یا زیست شناسی فقط بیش از حد پیچیده می شود مهندسی در این راه؟ "
| + | |
- | iGEM روش برای پاسخ به این سوال این است که در واقع سعی کنید به مهندس سیستمهای زیستی با تابع مناسب است. بنابراین بیش از 100 تیم دانشجویی رشته های مختلف علمی از سراسر جهان ، به طور عمده متشکل از دانشجویان مقطع کارشناسی در زیست شناسی ، بیوشیمی ، مهندسی ، انفورماتیک و ریاضیات ، انجام پروژه های مختلف در طول تابستان. این پروژه ها از برنامه های پزشکی برسند ، یعنی باکتری های اصلاح ژنتیکی شده مورد استفاده در درمان سرطان به محیط زیست و پروژه های ساخت ، یعنی ساخت و ساز از یک ساعت مچی می مانند ضد متشکل از سلولهای زنده. در مقابل به مهندسی ژنتیک کلاسیک که فقط یک ژن از ارگانیسم به ارگانیسم است منتقل بایت ، زیست شناسی مصنوعی به جلو می رود ساخت و ساز از سیستم های کاملا جدید با عملکرد کاملا جدید. بنابراین همه iGEM - تیم ها دسترسی به پایگاه داده یک ژن به نام رجیستری ، جایی که صدها نفر از نقاط مختلف ژنتیکی را با عملکردهای مشخص در دو شاخه "در دسترس هستند و بازی -" مانند قالب. این قطعات می توان به سادگی گیر با هم برای ساخت سیستم های عملکردی است.
| + | |
- | تعداد تیم ها افزایش iGEM - بیش از سال گذشته و همچنین آینده منافع عمومی در iGEM ، iGEM پروژه های تیم ها و زیست شناسی مصنوعی نشان می دهد که در طور کلی ، که زیست شناسی مصنوعی برای مطمئن شوید که تأثیر زیادی در زمینه های مختلف از هر دو تحقیقات علمی است و هر روز عمر.</p>
| + | |
- | -->
| + | |
| | | |
- | <h2>Project abstract</h2> | + | <p style="font-size:4mm;" align="justify">We have manufactured a <span style="font-size:6mm;">library of promoters</span>, since they are a basic element of every biological construction kit. Promoters are crucial for the regulation of differential gene expression which is the fundamental principle of both natural and synthetic biological systems. However, natural promoters often underlie highly complex regulation mechanisms, which complicate the construction of stable synthetic networks. </p> |
| | | |
- | <p style="font-size:4mm; ">Synthetic biology in mammalian systems will accelerate the pace of medical and fundamental research. Despite its huge potential, this field of <a href="https://2009.igem.org/Team:Heidelberg/Project_Introduction"><span style="font-size:6mm;">synthetic mammalian biology</span></a> is still in its infancy. Therefore, we want to lay foundations for the methodical usage of mammalian cells as chassis systems. For this purpose, two premises must be met: first, a mature cloning standard must be defined and standardized measurement protocols must be developed to ensure modularity and comparability of BioBrick constructs. Second, a comprehensive collection of biological parts and devices must be manufactured. </p> | + | <p style="font-size:4mm;" align="justify">Therefore, we have developed and successfully applied a <span style="font-size:6mm;">synthesis method</span> for <a href="https://2009.igem.org/Team:Heidelberg/Project_Synthetic_promoters">synthetic promoters</a>, and a strategy for their rational design. Our promoters can only be induced by predefined transcription factors. We claim that any synthetic promoter can be constructed by our methods.</p> |
| | | |
- | <p style="font-size:4mm; ">A <span style="font-size:6mm;">cloning standard</span> for mammalian BioBrick constructs has not yet been established as there are virtually no mammalian parts in the Registry up to now. We therefore analyzed all standards postulated so far and propose the BioBrick BB-2 proposal (Tom Knight) for future work with mammalian parts. </p> | + | <p style="padding-left:20px; font-size:4mm;" align="justify"><span style="font-size:6mm;">Rational design</span> of promoters relies on <i>in silico</i> tools: based on an elaborate evaluation of over 4000 promoter sequences throughout the human genome, we can predict functional sequences for promoters containing only transcription factor binding sites of interest. The necessary information is stored in <a href="https://2009.igem.org/Team:Heidelberg/Project_heartbeat">HEARTBEAT</a> (Heidelberg Artificial Transcription Factor Binding Site Engineering and Assembly Tool). HEARTBEAT is equipped with a GUI enabling the users to design synthetic promoters suitable for their own purposes. Furthermore, relying on a computer model based upon fuzzy logic, the outcome of the designed promoter can be simulated. In a reverse process considering the output, the model helps in optimizing the input sequence. <i>We show that HEARTBEAT predicted sequences <a href="https://2009.igem.org/Team:Heidelberg/HEARTBEAT_database#In_vivo_test_of_predicted_sequences_shows_that_functional_promoter_can_be_predicted_by_HEARTBEAT">work</i> in vivo.</a></u1> |
- | | + | |
- | <p style="font-size:4mm;">The standardized <span style="font-size:6mm;">characterization</span> of eukaryotic parts and devices is very challenging. We have developed standardized procedures for comparable <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement">measurements</a> of promoter strength by transient transfection in mammalian cell lines. However, since mammalian cells, unlike bacteria and yeast, do not propagate plasmids, they will need to be stably transfected for an optimized characterization. To meet this requirement we created a preliminary <a href="https://2009.igem.org/Team:Heidelberg/Project_Measurement#A_stable_cell_line_for_promoter_measurement">cell line</a> which includes FRT sites in its genome enabling stable transfections at defined sites. </p>
| + | |
- | | + | |
- | <p style="font-size:4mm;">We have manufactured a <span style="font-size:6mm;">library of promoters</span>, since they are a basic element of every biological construction kit. Promoters are crucial for the regulation of differential gene expression which is the fundamental principle of both natural and synthetic biological systems. However, natural promoters often underlie highly complex regulation mechanisms, which complicate the construction of stable synthetic networks. </p>
| + | |
- | | + | |
- | <p style="font-size:4mm;">Therefore, we have developed and successfully applied a <span style="font-size:6mm;">synthesis method</span> for <a href="https://2009.igem.org/Team:Heidelberg/Project_Synthetic_promoters">synthetic promoters</a>, and a strategy for their rational design. Our promoters can only be induced by predefined transcription factors. We claim that any synthetic promoter can be constructed by our methods.</p>
| + | |
- | | + | |
- | <p style="padding-left:20px; font-size:4mm;"><span style="font-size:6mm;">Rational design</span> of promoters relies on in silico tools: based on an elaborate evaluation of over 4000 promoter sequences throughout the human genome, we can predict functional sequences for promoters containing only transcription factor binding sites of interest. The necessary information is stored in <a href="https://2009.igem.org/Team:Heidelberg/Project_heartbeat">HEARTBEAT</a> (Heidelberg Artificial Transcription Factor Binding Site Engineering and Assembly Tool). HEARTBEAT is equipped with a GUI enabling the users to design synthetic promoters suitable for their own purposes. Furthermore, relying on a computer model based upon fuzzy logic, the outcome of the designed promoter can be simulated. In a reverse process considering the output, the model helps in optimizing the input sequence.</u1>
| + | |
- | | + | |
- | <p style="font-size:4mm;">Synthetic promoters offer a <a href="https://2009.igem.org/Project_SaO"><span style="font-size:6mm;">huge potential</span></a> to fundamental research. For instance, they allow the construction of an assay monitoring several user-defined pathways at the same time. Also, controllable gene expression is very interesting for medical applications where it might enable selective targeting of cancer cells in virotherapy.</p>
| + | |
| | | |
| + | <p style="font-size:4mm;" align="justify">Synthetic promoters offer a <a href="https://2009.igem.org/Project_SaO"><span style="font-size:6mm;">huge potential</span></a> to fundamental research. For instance, they allow the construction of an assay monitoring several user-defined pathways at the same time. Also, controllable gene expression is very interesting for medical applications where it might enable selective targeting of cancer cells in virotherapy.</p> |
| + | <a style="padding: 10px 15px;" href="#top">Go to Top</a> |
| </div> <!-- end SubWrapper --> | | </div> <!-- end SubWrapper --> |
- |
| |
| <div id="news"> | | <div id="news"> |
- | | + | |
| </div> <!-- end news --> | | </div> <!-- end news --> |
| </div> <!-- end Super_main_wrapper --> | | </div> <!-- end Super_main_wrapper --> |
| + | <script type="text/javascript"> |
| + | function setPageSize() { |
| + | len = document.getElementById('super_main_wrapper').offsetHeight; |
| + | document.getElementById('bodyContent').style.height = len + 'px'; |
| + | document.getElementById('news').style.height = len + 'px'; |
| + | document.getElementById('SupWrapper').style.height = len + 'px'; |
| + | } |
| + | </script> |
| | | |
| </body></html> | | </body></html> |
For higher resolution: Download Graphical Abstract
Project Highlights
- We are able to predict functional mammalian promoter sequences (go there)
- We have created a functional biochemical synthesis method for the generation of promoters libraries (go there)
- We have developed novel standards for measurement of promoters in mammalian cells (go there)
- 4 RFCs, well characterized parts (Parts) , (RFCs)
- First attempts to create a eukaryotic standard chassis (Stable Cell Line)
- Multicolor and multi-functional output devices for promoter characterization (Output)
- Isolation and characterization of natural promoters (Natural Promoters)
Project abstract
(German)
Synthetic biology in mammalian systems will accelerate the pace of medical and fundamental research. Despite its huge potential, this field of synthetic mammalian biology is still in its infancy. Therefore, we want to lay foundations for the methodical usage of mammalian cells as chassis systems. For this purpose, two premises must be met: first, a mature cloning standard must be defined and standardized measurement protocols must be developed to ensure modularity and comparability of BioBrick constructs. Second, a comprehensive collection of biological parts and devices must be manufactured.
A cloning standard for mammalian BioBrick constructs has not yet been established as there are virtually no mammalian parts in the Registry up to now. We therefore analyzed all standards postulated so far and propose the BioBrick BB_2 proposal (Tom Knight) for future work with mammalian parts.
The standardized characterization of eukaryotic parts and devices is very challenging. We have developed standardized procedures for comparable measurements of promoter strength by transient transfection in mammalian cell lines. However, since mammalian cells, unlike bacteria and yeast, do not propagate plasmids, they will need to be stably transfected for an optimized characterization. To meet this requirement we created a preliminary cell line which includes FRT sites in its genome enabling stable transfections at defined sites.
We have manufactured a library of promoters, since they are a basic element of every biological construction kit. Promoters are crucial for the regulation of differential gene expression which is the fundamental principle of both natural and synthetic biological systems. However, natural promoters often underlie highly complex regulation mechanisms, which complicate the construction of stable synthetic networks.
Therefore, we have developed and successfully applied a synthesis method for synthetic promoters, and a strategy for their rational design. Our promoters can only be induced by predefined transcription factors. We claim that any synthetic promoter can be constructed by our methods.
Rational design of promoters relies on in silico tools: based on an elaborate evaluation of over 4000 promoter sequences throughout the human genome, we can predict functional sequences for promoters containing only transcription factor binding sites of interest. The necessary information is stored in HEARTBEAT (Heidelberg Artificial Transcription Factor Binding Site Engineering and Assembly Tool). HEARTBEAT is equipped with a GUI enabling the users to design synthetic promoters suitable for their own purposes. Furthermore, relying on a computer model based upon fuzzy logic, the outcome of the designed promoter can be simulated. In a reverse process considering the output, the model helps in optimizing the input sequence. We show that HEARTBEAT predicted sequences work in vivo.
Synthetic promoters offer a huge potential to fundamental research. For instance, they allow the construction of an assay monitoring several user-defined pathways at the same time. Also, controllable gene expression is very interesting for medical applications where it might enable selective targeting of cancer cells in virotherapy.
Go to Top