Self-assembling membranes Idea Approach.html
From 2009.igem.org
(2 intermediate revisions not shown) | |||
Line 2: | Line 2: | ||
Content= | Content= | ||
__NOTOC__ | __NOTOC__ | ||
- | + | <html><left> | |
+ | <font size="3" color="#009ee0"><b>Self-assembling membranes</b></font> | ||
+ | </left></html> | ||
=Self-assembling polypeptide membranes with adjustable pore properties= | =Self-assembling polypeptide membranes with adjustable pore properties= | ||
<br> | <br> | ||
Line 26: | Line 28: | ||
<br> | <br> | ||
<html> | <html> | ||
- | <center> <img src="https://static.igem.org/mediawiki/2009/ | + | <center> <img src="https://static.igem.org/mediawiki/2009/e/e4/Protein_membranes_idea_fig_1.GIF" align="center" width="596" height="351" border="0" /> |
<br> | <br> | ||
<b>Figure 2:</b> Assembly of a polypeptide consisting of a tetramerization domain and antiparallel homodimeric coiled-coil-forming domain results in a lattice with pores (circles) of defined size and properties depending on the nature of the coiled-coil segment. | <b>Figure 2:</b> Assembly of a polypeptide consisting of a tetramerization domain and antiparallel homodimeric coiled-coil-forming domain results in a lattice with pores (circles) of defined size and properties depending on the nature of the coiled-coil segment. | ||
Line 42: | Line 44: | ||
</html> | </html> | ||
<br> | <br> | ||
+ | <html> | ||
+ | <p> | ||
+ | <ul> | ||
+ | <li><a href="https://2009.igem.org/Self-assembling_membranes_Results.html" class="plavo">Results</a></li> | ||
+ | </ul></p> | ||
+ | </html> | ||
}} | }} |
Latest revision as of 03:12, 22 October 2009
|
Self-assembling polypeptide membranes with adjustable pore properties
Figure 1: The summary of the idea of self-assembled polypeptide membrane and its performance in removing viruses from solution. A) The polypeptide material composed of tetramerization domain linked to coiled-coil-forming domain . B) The removal of viruses from the solution with the self-assembled polypeptide membrane. The idea and approach
Figure 2: Assembly of a polypeptide consisting of a tetramerization domain and antiparallel homodimeric coiled-coil-forming domain results in a lattice with pores (circles) of defined size and properties depending on the nature of the coiled-coil segment. In order to test the formation and applicability of such designed membranes we prepared fusion proteins where oligomerization-prone domain is a tetramerization domain of p53 and a coiled-coil-forming segment is either a designed antiparallel homodimeric coiled-coil APH, APH1 (Gurnon, 2003) or BCR, a coiled-coil forming domain from the natural protein (Taylor, 2005). All of selected coiled-coil-forming domains associate into antiparallel coiled-coil dimers but they differ in length (45, 31 or 36 amino acid residues) and stability (Figure 3). We demonstrate that membranes formed by self-assembly of nanoBricks successfully retained large molecules and viruses when filtration was performed
Figure 3: Scheme of the constructs (A) and 3D model of APH-p53 fusion construct (B).
|