Team:EPF-Lausanne

From 2009.igem.org

(Difference between revisions)
(Concept)
 
(42 intermediate revisions not shown)
Line 1: Line 1:
{{EPF-Lausanne09}}
{{EPF-Lausanne09}}
 +
<div CLASS="epfl09front">
 +
[[Image:Mainpage.jpg|center]]
 +
</div>
 +
<div CLASS="epfl09bis">
 +
<br><br>
 +
==Concept==
 +
<br>
 +
<div style="text-align:justify;">
 +
[[Image:LovTAP_dimer.png|right|300px|thumb|LovTAP dimer bound to DNA]]
 +
Recent discoveries of photoreceptors in many organisms got us excited about the possibility of using light-responsive genetic tools in synthetic biology. Indeed, such tools could in principle induce phenotypic changes in a more localized, preciser and faster fashion than currently available chemical-based methods. To evaluate the biotechnological potential of such tools, we specifically aimed to induce a change in gene expression, more specifically to directly turn a gene on or off, in a living organism, in response to a light stimulus.
-
<div CLASS="epfltrick">__TOC__
+
For this purpose, we used a light-sensitive DNA binding protein "LovTAP" (for Light, Oxygen, Voltage Tryptophan-Activated Protein) to convert a light input into a chosen output, here fluorescence generated by the RFP reporter gene.
-
</div><div CLASS="epfl09">
+
-
<html><center><a href="https://2009.igem.org/Team:EPF-Lausanne/Project_Abstract"><img src="https://static.igem.org/mediawiki/2009/4/44/Mainpage.jpg"></a></center></html>
+
The results clearly show that this light-induced gene switch tool works ''in vivo'', demonstrating the feasibility of implementing such powerful technology for a diverse range of bio(techno)logical applications.
 +
</div>
-
<br>
+
<br><br><br><br>
-
<br>
+
-
[[Image:Logo_UBS.jpg|link "www.ubs.com"|200 px|center]]
+
-
 
+
{| class="wikitable" style="text-align:center; width:100%;"
{| class="wikitable" style="text-align:center; width:100%;"
|-
|-
Line 16: Line 23:
! scope=col | [[Image:Logo_Novartis.png|100 px]]
! scope=col | [[Image:Logo_Novartis.png|100 px]]
! scope=col | [[Image:Logo_Syngenta.png|80 px]]
! scope=col | [[Image:Logo_Syngenta.png|80 px]]
 +
! scope=col | [[Image:Logo_UBS.jpg|200 px]]
! scope=col | [[Image:Logo_ciba.jpg|80 px]]
! scope=col | [[Image:Logo_ciba.jpg|80 px]]
! scope=col | [[Image:Logo_nikon.jpg|60 px]]
! scope=col | [[Image:Logo_nikon.jpg|60 px]]

Latest revision as of 22:45, 21 October 2009

Mainpage.jpg



Concept


LovTAP dimer bound to DNA

Recent discoveries of photoreceptors in many organisms got us excited about the possibility of using light-responsive genetic tools in synthetic biology. Indeed, such tools could in principle induce phenotypic changes in a more localized, preciser and faster fashion than currently available chemical-based methods. To evaluate the biotechnological potential of such tools, we specifically aimed to induce a change in gene expression, more specifically to directly turn a gene on or off, in a living organism, in response to a light stimulus.

For this purpose, we used a light-sensitive DNA binding protein "LovTAP" (for Light, Oxygen, Voltage Tryptophan-Activated Protein) to convert a light input into a chosen output, here fluorescence generated by the RFP reporter gene.

The results clearly show that this light-induced gene switch tool works in vivo, demonstrating the feasibility of implementing such powerful technology for a diverse range of bio(techno)logical applications.





Logo MerckSerono.png Logo Novartis.png Logo Syngenta.png Logo UBS.jpg Logo ciba.jpg Logo nikon.jpg Logo tecan.gif

Locations of visitors to this page