Team:Calgary/Modelling
From 2009.igem.org
(Difference between revisions)
Line 100: | Line 100: | ||
</div> | </div> | ||
<div class="desc"> | <div class="desc"> | ||
- | The modelling aspect | + | The aim of the modelling aspect of our project is to develop simulations that would enable us to predict the behavior of the Autoinducer-2 (AI-2) signalling system. For example, in our system, knowing of the optimal LuxPQ concentration within the periplasmic space for the bacteria to function is crucial, and if one attempted to find the optimal level of LuxPQ in the lab, the cost of experiment would rise and it would take days and months to figure out. With an accurate model, however, we would be able to predict the optimal level of LuxPQ within a matter of seconds, which would result in a cheaper and much efficient experiment. This year, we decided to model our system in two different ways: Membrane Computing and Differential Equation Based Modelling, and through them, we seek to answer different questions, as noted below: |
</div> | </div> | ||
<br> | <br> | ||
Line 116: | Line 116: | ||
<div class="heading">Differential Equation Based Modelling</div> | <div class="heading">Differential Equation Based Modelling</div> | ||
<div class="desc"> | <div class="desc"> | ||
- | System characterization is essential for understanding the effects specific conditions and inputs by simulation. By using results that are collected from modelling and simulation, optimizations through experimental means are reduced. The combination of mathematics and engineering principles, combined with systems biology can potentially solve many complexities in experimental sciences. If a system can be successfully modelled, there is the potential of reducing money and resource allocations to experimental science. As well, through the use of simulation, certain conditions can be applied to optimize certain results. The goals for the mathematical modelling team are: | + | System characterization is essential for understanding the effects of specific conditions and inputs by simulation. By using results that are collected from modelling and simulation, optimizations through experimental means are reduced. The combination of mathematics and engineering principles, combined with systems biology can potentially solve many complexities in experimental sciences. If a system can be successfully modelled, there is the potential of reducing money and resource allocations to experimental science. As well, through the use of simulation, certain conditions can be applied to optimize certain results. The goals for the mathematical modelling team are: |
<br><br> | <br><br> | ||
1. Develop the stochastic and differential model for the AI-2 signalling system. This will be done in Simbiology, a toolbox in MATLAB that allows individuals to model, design, simulate and analyze different biochemical pathways. | 1. Develop the stochastic and differential model for the AI-2 signalling system. This will be done in Simbiology, a toolbox in MATLAB that allows individuals to model, design, simulate and analyze different biochemical pathways. |
Revision as of 05:38, 9 October 2009
UNIVERSITY OF CALGARY