Team:PKU Beijing/Human/Overview
From 2009.igem.org
Line 8: | Line 8: | ||
It should be said that in the first place, it’s the improvement of biology itself gave birth to the appearance of so-called DIYbio. Nowadays, numerous biotech firms render service of sequencing and provide great quantities of protein tools such as restriction enzymes, primers, competent cells, varies of gene manipulation kits and so on, which making molecular experiments at home possible. In addition, powerful modern information technology also has prompted the progress of DIYbio. Ever-increasing scientific knowledge and information online (sometimes even free) made DIYbio even more convenient currently. | It should be said that in the first place, it’s the improvement of biology itself gave birth to the appearance of so-called DIYbio. Nowadays, numerous biotech firms render service of sequencing and provide great quantities of protein tools such as restriction enzymes, primers, competent cells, varies of gene manipulation kits and so on, which making molecular experiments at home possible. In addition, powerful modern information technology also has prompted the progress of DIYbio. Ever-increasing scientific knowledge and information online (sometimes even free) made DIYbio even more convenient currently. | ||
- | [[Image:PKU_Overview_MLP.jpg|400px|left|thumb|Fig1. Meredith Patterson at work in her home lab.]] | + | [[Image:PKU_Overview_MLP.jpg|400px|left|thumb|Fig1. Meredith Patterson at work in her home lab. Source:http://www.guardian.co.uk/technology/2009/mar/19/biohacking-genetics-research]] |
Complaining that the field of biological research is chronically dominated by professional labs in universities and scientific research institutions, some DIYers are eager to break with the tradition, “democratize” science and, as they say, to make life science more interesting and even more “sexy”. They declared themselves to be biohackers proudly, innovators to explore biological realms energetically as a hobby by applying biotechnics themselves. Meredith L. Patterson, a computer programmer, is one of the pioneers of biohackers. She is trying to modify the yogurt bacteria genetically to fluoresce to signal the presence of melamine. | Complaining that the field of biological research is chronically dominated by professional labs in universities and scientific research institutions, some DIYers are eager to break with the tradition, “democratize” science and, as they say, to make life science more interesting and even more “sexy”. They declared themselves to be biohackers proudly, innovators to explore biological realms energetically as a hobby by applying biotechnics themselves. Meredith L. Patterson, a computer programmer, is one of the pioneers of biohackers. She is trying to modify the yogurt bacteria genetically to fluoresce to signal the presence of melamine. | ||
Line 15: | Line 15: | ||
Another knotty problem is the resource for gene cloning. Along with the development of genome-based technologies, the whole genome sequences of more and more organisms are realized. Thus, directly cloning genes from the genome is feasible. However, in my opinion, the concept of biobricks proposed by iGEM competitions is more feasible to those amateurs: sufficient and precise information about the design, sequence, function and so on of standardized parts would free the biohackers from the suffering of searching appropriate functional genes from genome-wide scale and designing the proper primers to clone them. In addition, the standardized method of cutting and splicing the inserts and vectors also make process of molecular cloning more convenient. Imaging that one day kits of biological parts can be purchased from special markets, the DIYbio will become a novel popular forms of entertainment for those DIY fans. | Another knotty problem is the resource for gene cloning. Along with the development of genome-based technologies, the whole genome sequences of more and more organisms are realized. Thus, directly cloning genes from the genome is feasible. However, in my opinion, the concept of biobricks proposed by iGEM competitions is more feasible to those amateurs: sufficient and precise information about the design, sequence, function and so on of standardized parts would free the biohackers from the suffering of searching appropriate functional genes from genome-wide scale and designing the proper primers to clone them. In addition, the standardized method of cutting and splicing the inserts and vectors also make process of molecular cloning more convenient. Imaging that one day kits of biological parts can be purchased from special markets, the DIYbio will become a novel popular forms of entertainment for those DIY fans. | ||
+ | |||
+ | [[Image:PKU_Overview_Tvirus.jpg|400px|right|thumb|Fig2. T-virus in the Resident evil. Source:http://www.umbrellacorporation.com/home/index.php?option=com_content&task=view&id=55&Itemid=9]] | ||
Even though the biohackers constantly asserted that they should not be confused with bioterrorist, the DIYbio still raised disputes about biosafety immediately after its birth. People worry that things might get out of control and dangerous new life forms might be unleashed, causing unintended consequences. After all, the assumption that one day in the future viruses similar to the T-viruses in the Resident evil series will be developed in a garage seems not to be absolutely ridiculous. Prompt actions seem to be imperative. | Even though the biohackers constantly asserted that they should not be confused with bioterrorist, the DIYbio still raised disputes about biosafety immediately after its birth. People worry that things might get out of control and dangerous new life forms might be unleashed, causing unintended consequences. After all, the assumption that one day in the future viruses similar to the T-viruses in the Resident evil series will be developed in a garage seems not to be absolutely ridiculous. Prompt actions seem to be imperative. |
Revision as of 14:38, 21 October 2009
|
||||||||||||||
|
||||||||||||||