Self-assembling membranes Idea Approach.html
From 2009.igem.org
Line 31: | Line 31: | ||
</center> | </center> | ||
</html> | </html> | ||
- | <br> | + | <br><p> |
- | In order to test the formation and applicability of such designed membranes we prepared fusion proteins where oligomerization-prone domain is a tetramerization domain of p53 and a coiled-coil-forming segment is either a designed antiparallel homodimeric coiled-coil APH, APH1 (Gurnon, 2003) or BCR, a coiled-coil forming domain from the natural protein (Taylor, 2005). All of selected coiled-coil-forming domains associate into antiparallel coiled-coil dimers but they differ in length (45, 31 or 36 amino acid residues) and stability (''Figure 3''). We demonstrate that membranes formed by self-assembly of nanoBricks successfully retained large molecules and viruses when filtration was performed | + | In order to test the formation and applicability of such designed membranes we prepared fusion proteins where oligomerization-prone domain is a tetramerization domain of p53 and a coiled-coil-forming segment is either a designed antiparallel homodimeric coiled-coil APH, APH1 (Gurnon, 2003) or BCR, a coiled-coil forming domain from the natural protein (Taylor, 2005). All of selected coiled-coil-forming domains associate into antiparallel coiled-coil dimers but they differ in length (45, 31 or 36 amino acid residues) and stability (''Figure 3''). We demonstrate that membranes formed by self-assembly of nanoBricks successfully retained large molecules and viruses when filtration was performed</p> |
<br> | <br> | ||
<br> | <br> |
Revision as of 19:21, 21 October 2009
|
Summary
Figure 1: The self-assembled polypeptide membrane and its efficacy in removing viruses from solution. A) The polypeptide material composed of tetramerization domain linked to coiled-coil-forming domain . B) The removal of viruses from the solution with the self-assembled polypeptide membrane. The idea and approach
Figure 2: Assembly of a polypeptide consisting of a tetramerization domain and antiparallel homodimeric coiled-coil-forming domain results in a lattice with pores (circles) of defined size and properties depending on the nature of the coiled-coil segment. In order to test the formation and applicability of such designed membranes we prepared fusion proteins where oligomerization-prone domain is a tetramerization domain of p53 and a coiled-coil-forming segment is either a designed antiparallel homodimeric coiled-coil APH, APH1 (Gurnon, 2003) or BCR, a coiled-coil forming domain from the natural protein (Taylor, 2005). All of selected coiled-coil-forming domains associate into antiparallel coiled-coil dimers but they differ in length (45, 31 or 36 amino acid residues) and stability (Figure 3). We demonstrate that membranes formed by self-assembly of nanoBricks successfully retained large molecules and viruses when filtration was performed
Figure 3: Scheme of the constructs (A) and 3D model of APH-p53 fusion construct (B). |