Bionanostructures.html
From 2009.igem.org
Line 12: | Line 12: | ||
Biological systems are almost entirely driven by self-assembly. This is an essential process for many of the key activities of living cells. These include the formation of protein and nucleic acid complexes necessary to protein, RNA, and DNA synthesis and degradation, formation of plasma membrane, flagella, cytoskeleton assembly as well as pathological conditions such as the formation of prions and viral particles, and many others. Biological molecules forming these systems range from nucleic acids, polypeptides and polysaccharides. They can even be regulated by multiple chemical and biological stimuli (Lu et al., 2008; Bromley et al., 2008; Sweeney et al., 2008). Fiber forming proteins are fundamental building blocks of life. They play an essential role in motility (flagellin), elasticity (elastin, collagen), scaffolding (actin), stabilization (keratins) and protection of the cells, tissues and organisms (spider and insect silks). They also form a tight stable structure that has the tendency to self-assemble. These proteins are widely used in many medical and technical applications (Scheibel, 2005). | Biological systems are almost entirely driven by self-assembly. This is an essential process for many of the key activities of living cells. These include the formation of protein and nucleic acid complexes necessary to protein, RNA, and DNA synthesis and degradation, formation of plasma membrane, flagella, cytoskeleton assembly as well as pathological conditions such as the formation of prions and viral particles, and many others. Biological molecules forming these systems range from nucleic acids, polypeptides and polysaccharides. They can even be regulated by multiple chemical and biological stimuli (Lu et al., 2008; Bromley et al., 2008; Sweeney et al., 2008). Fiber forming proteins are fundamental building blocks of life. They play an essential role in motility (flagellin), elasticity (elastin, collagen), scaffolding (actin), stabilization (keratins) and protection of the cells, tissues and organisms (spider and insect silks). They also form a tight stable structure that has the tendency to self-assemble. These proteins are widely used in many medical and technical applications (Scheibel, 2005). | ||
<br><br> | <br><br> | ||
- | Natural polymers are all candidates for the components of self-assembled bionanostructures. The main characteristics of nucleic acids, polypeptides, polysaccharides and lipids such as stability, functional versatility, flexibility, manipulation ability and occurrence in natural materials are compared in Table 1. | + | Natural polymers are all candidates for the components of self-assembled bionanostructures. The main characteristics of nucleic acids, polypeptides, polysaccharides and lipids such as stability, functional versatility, flexibility, manipulation ability and occurrence in natural materials are compared in ''Table 1''. |
<br> | <br> | ||
<br> | <br> | ||
Line 63: | Line 63: | ||
</table> | </table> | ||
<br> | <br> | ||
- | Table 1: Characteristics of biological molecules as nanostructure building blocks | + | <b>Table 1:</b> Characteristics of biological molecules as nanostructure building blocks |
</center> | </center> | ||
</html> | </html> |
Revision as of 22:03, 21 October 2009
|
Self-assembled bionanostructures
Table 1: Characteristics of biological molecules as nanostructure building blocks Therefore biological systems offer many different molecules (peptides, nucleic acids, polysaccharides) that can be used to form bionanostructures / bionanomaterials. By the regulation of assembly of these components, the smart bionanomaterials are only a step away. Polysaccharides, such as cellulose represent the majority of biomass, however nucleic acids are the most easy to modify and synthesize. Polypeptides seem to represent the best balance of structural and functional versatility, and allow ample possibility of modifications so it is no wonder that most of the natural nanomachines and also dynamic structural elements are made of polypeptides. Potentials of self-assembled bionanostructures are almost limitless. In fact we are limited mainly by our knowledge and imagination. We can take the structural paradigms from nature but on the other hand we can only use the cell factory to produce nanomaterials that have structure and properties unlike any structures existing in nature. It is in this field that we can have the most productive synthesis of engineering and biological philosophy. |