Team:EPF-Lausanne/Team

From 2009.igem.org

Revision as of 07:54, 2 September 2009 by Guittet (Talk | contribs)

Contents


Team





Our wiki has been frozen. For future updates we advise you to redirect to iGEM's Main Page. To follow our adventure at the Jamboree in Boston, keep an eye on our online BLOG.


Welcome to the KULeuven IGEM 2008 Homepage!

Enjoy the hard work we delivered, feel free to contact us at igem@kuleuven.be and visit our university/sponsor (BioSCENTer) iGEM page!

Synthetic Biology: BioSCENTer and iGEM

Synthetic biology is a new challenge in biosciences. It combines biology and engineering principles to design and build new biological functions and systems. Examples are abound: cancer cell invading bacteria, microbes that take pictures, antimalarial drug producers,... The advantage of using living systems for these purposes is that, once they are designed and built, they are self-reproducible. The challenge, however, lies exactly within the design and construction: making biological circuits and devices as robust and predictive as their electrical counterparts. ...

The international Genetically Engineered Machine competition (iGEM) or iGEM competition is a synthetic biology competition for multidisciplinary teams of undergraduate students. It was first organized in 2004 by Drew Endy, Randy Rettberg and Tom Knight of MIT with two goals in mind: to yield new ideas in synthetic biology and to form the future researchers in this new scientific community. Whereas 5 US teams competed in 2004, the 2007 edition already had 750 students and advisors grouped in 54 teams from 19 countries. This year, the competition already counts 83 teams!

The core of the iGEM competition is to design and build a “new genetic machine” with BioBricks. BioBricks are standardized, off the shelf biological parts that are used by genetic network designers. All BioBricks that were made during previous iGEM competitions are registered and documented in the Registry of Standard Biological Parts. Each iGEM competition thus starts from the efforts of the previous years.

Leuven

The University of Leuven was founded almost six hundred years ago. Throughout the centuries people have always occupied center stage at the Katholieke Universiteit Leuven. The University's academic fame has attracted scholars and scientists as Justus Lipsius, Gerard Mercator and Andreas Vesalius who have all made valuable contribution to the European intellectual life. The University of Leuven can look back on a glorious past, but it also moves with the times. The University's educational concept is modern, with research activities focused on the needs and aspirations of contemporary people and society. The University of Leuven is famous not just within the borders of Belgium, but far beyond as well. Being a very lively city of and for students, Leuven aspires to maintain that reputation. In contrast to most university cities, Leuven does not have a closed campus. The University buildings are spread throughout the city and were originally built for completely different purposes.

The Team

The KULeuven team consists of 12 enthusiastic students selected out of three faculties, 4 civil engineers, 4 bio-engineers and 4 biochemists. More information on the team members can be found on the Students page or by scrolling over the heads of the students.

Maarten Breckpot
Maarten Breckpot

Studies:
1st Master of Applied Sciences and Engineering – Mathematical Engineering
Country:
Belgium
Nick Van Damme
Nick Van Damme

Studies:
1st Master of Applied Sciences and Engineering – Mathematical Engineering
Country:
Belgium
Benjamien Moeyaert
Benjamien Moeyaert

Studies:
3rd Bachelor of Biochemistry and Biotechnology
Country:
Belgium
Stefanie Roberfroid
Stefanie Roberfroid

Studies:
3rd Bachelor of Bioscience Engineering – Biomolecular Engineering
Country:
Belgium
Dries Vercruysse
Dries Vercruysse

Studies:
1st Master of Applied Sciences and Engineering - Nanoscience and Nanotechnology
Country:
Belgium
Andim Doldurucu
Andim Doldurucu

Studies:
1st Master of Bioscience Engineering – Nanoscience and Nanotechnology
Country:
Turkey
Hanne Tytgat
Hanne Tytgat

Studies:
3rd Bachelor of Biochemistry and Biotechnology
Country:
Belgium
Elke Van Assche
Elke Van Assche

Studies:
3rd Bachelor of Bioscience Engineering – Biomolecular Engineering
Country:
Belgium
Jan Mertens
Jan Mertens

Studies:
1st Master of Bioscience Engineering – Biomolecular Engineering
Country:
Belgium
Nathalie Busschaert
Nathalie Busschaert

Studies:
3rd Bachelor of Chemistry
Country:
Belgium
Jonas Demeulemeester
Jonas Demeulemeester

Studies:
1st Master of Biochemistry and Biotechnology
Country:
Belgium
Antoine Vandermeersch
Antoine Vandermeersch

Studies:
2nd and 3rd Bachelor of Applied Sciences and Engineering – Electrical and Materials Engineering
Country:
Belgium
== '''Who we are''' == {|border = "0" |- |rowspan="3"| We are a team of undergraduates with an interdisiplinary background. Most of us are from the life sciences faculty but some are from microengineering, mechanical engineering and chemistry. [[Image: Group.jpg|500px|thumb|center|Group : from left to right : up : Nicolas G, Christian, Gabriela, Tú, Nathalie, Carine, Nicolas D, Rafael, down : Heidi, Sebastian, Caroline, Mélanie]]

Back to top


Undergrads




Instructors



Advisors


|}

Back to top


What we want to do

Light-sensitive proteins can easily be found in nature, but they have never been cloned into other cells. In this project, our aim is to design a fusion protein that would allow genetic regulation through light control.

Therefore we are working on cloning strategies that would allow us to fuse a light-sensitive domain (LovTAP in our case) with a regulatory domain (like the Trp operon). The idea is to allow transmission of the conformational change induced by light (on the light-sensitive domain) to the DNA-binding domain. This transmitted conformational change would then result in an increase or decrease of the regulatory domain's affinity for the DNA promoter site.

The overal effect would thus be a genetic expression controlled by light! There would be many applications to such a "switch" : it could kill bacteria at a certain point, stop their growth, or make them express specific proteins...

To improve the change induced by light (which is generally very unstable), we also plan a modeling part where the aim is to find which residue we would have to mutate in order to have a stable protein after the switch.

The advantage of such a system is that we could apply the light on a system and then remove it (not like if we added some liquid on the cells).


Where we are from

We are all studying at EPFL aka the Swiss Institute of Technology of Lausanne. The campus is located near the shore of lake Geneva in the surroundings of the city of Lausanne, 50 km away from Geneva.


Back to top