Team:Cambridge

From 2009.igem.org

(Difference between revisions)
Line 1: Line 1:
{{Template:Cambridge2}}<!--Do not remove the first and last lines in this page!-->
{{Template:Cambridge2}}<!--Do not remove the first and last lines in this page!-->
<h1>Overview</h1>
<h1>Overview</h1>
-
Previous iGEM teams have focused on genetically engineering bacteria to respond to novel inputs – for example light, or biologically significant compounds. There is an unmistakable need, therefore, to also develop clear, user-friendly outputs, especially for use with biosensors.  The most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy.  However, how much easier would it be if we could simply ''see'' the output with our own eyes?  The Cambridge 2009 iGEM team is engineering E. coli to produce a range of pigments in order to equip future projects with better, more reliable, discrete outputs under logic control. Further, our bacteria utilize a shutter mechanism that guarantees pigment production after just a brief exposure to the desired input.  
+
Previous iGEM teams have focused on genetically engineering bacteria to respond to novel inputs – for example light, or biologically significant compounds. There is an unmistakable need, therefore, to also develop clear, user-friendly outputs, especially for use with biosensors.  The most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy.  However, how much easier would it be if we could simply ''see'' the output with our own eyes?  The Cambridge 2009 iGEM team is engineering E. coli to produce a range of pigments in order to equip future projects with better, more reliable, discrete outputs under logic control. Further, our bacteria utilize a an amplifying mechanism, which effectively acts as an "on" switch to guarantee maximum pigment production even with low input.  
[[Image:cam09logo.png|289px]]
[[Image:cam09logo.png|289px]]
<!--Do not remove the first and last lines in this page!--><div id="contentbox_bottom"></div></div>
<!--Do not remove the first and last lines in this page!--><div id="contentbox_bottom"></div></div>

Revision as of 11:03, 25 July 2009


Overview

Previous iGEM teams have focused on genetically engineering bacteria to respond to novel inputs – for example light, or biologically significant compounds. There is an unmistakable need, therefore, to also develop clear, user-friendly outputs, especially for use with biosensors. The most popular output is the expression of a fluorescent protein, detectable using fluorescence microscopy. However, how much easier would it be if we could simply see the output with our own eyes? The Cambridge 2009 iGEM team is engineering E. coli to produce a range of pigments in order to equip future projects with better, more reliable, discrete outputs under logic control. Further, our bacteria utilize a an amplifying mechanism, which effectively acts as an "on" switch to guarantee maximum pigment production even with low input. Cam09logo.png