Team:EPF-Lausanne/Project Abstract

From 2009.igem.org

(Difference between revisions)
m (Results Highlights)
 
(108 intermediate revisions not shown)
Line 1: Line 1:
{{EPF-Lausanne09}}
{{EPF-Lausanne09}}
<div CLASS="epfltrick">__TOC__
<div CLASS="epfltrick">__TOC__
-
</div><div CLASS="epfl09">
+
</div><div CLASS="epfl09incub">
-
 
+
<html><br>
-
<html><center>
+
-
<font size="6" color="#007CBC"><i>Project Abstract</i></font>
+
-
</center></html>
+
-
<br>
+
-
----
+
-
<br>
+
<br>
<br>
 +
<br><br><br>
 +
<br><center>
 +
<a href="https://2009.igem.org/Team:EPF-Lausanne/LOVTAP"
 +
onMouseOver="document.MyImage7.src='https://static.igem.org/mediawiki/2009/thumb/d/d4/Theory_lov.jpg/100px-Theory_lov.jpg';" onMouseOut="document.MyImage7.src='https://static.igem.org/mediawiki/2009/thumb/5/52/Theory_lov_nb.jpg/100px-Theory_lov_nb.jpg';">
 +
<img src="https://static.igem.org/mediawiki/2009/thumb/5/52/Theory_lov_nb.jpg/100px-Theory_lov_nb.jpg" name="MyImage7"></a>
-
<html>
 
-
<!-- CSS -->
 
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-
<link rel="stylesheet" type="text/css" href="https://2008.igem.org/wiki/index.php?title=User:Avdmeers/wiki/teammap.css&action=raw&ctype=text/css" />
 
 +
<a href="https://2009.igem.org/Team:EPF-Lausanne/Strategy"
 +
onMouseOver="document.MyImage4.src='https://static.igem.org/mediawiki/2009/thumb/4/42/Strategy.jpg/100px-Strategy.jpg';" onMouseOut="document.MyImage4.src='https://static.igem.org/mediawiki/2009/thumb/8/8f/Strategy_nb.jpg/100px-Strategy_nb.jpg';">
 +
<img src="https://static.igem.org/mediawiki/2009/thumb/8/8f/Strategy_nb.jpg/100px-Strategy_nb.jpg" name="MyImage4"></a>
-
<script type="text/javascript">
 
-
function CngTxt(id,txt){
 
-
var obj=document.getElementById(id);
 
-
if (txt){ obj.innerHTML=txt; }
 
-
else { obj.innerHTML='<br>scroll over the pictograms to get a short description or click on them to go to the corresponding page'; }
 
-
}
 
-
</script>
 
-
<!-- Script for preloading images into webpage -->
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-
<script type="text/javascript">
+
-
Image1 = new Image(665,499)
+
-
Image1.src = "https://static.igem.org/mediawiki/2008/1/17/StudentsKULBlackWhite.JPG"
+
-
Image2 = new Image(215,54);
+
<a href="https://2009.igem.org/Team:EPF-Lausanne/LOVTAP_Results"
-
Image2.src = "https://static.igem.org/mediawiki/2008/5/5d/KUL_iGEM_link2.png"
+
onMouseOver="document.MyImage6.src='https://static.igem.org/mediawiki/2009/thumb/b/ba/Results_lab.jpg/100px-Results_lab.jpg';" onMouseOut="document.MyImage6.src='https://static.igem.org/mediawiki/2009/thumb/f/f1/Results_lab_nb.jpg/100px-Results_lab_nb.jpg';">
-
</script>
+
<img src="https://static.igem.org/mediawiki/2009/thumb/f/f1/Results_lab_nb.jpg/100px-Results_lab_nb.jpg" name="MyImage6"></a>
-
<script type="text/javascript">
 
-
function popup(mylink, windowname)
 
-
{
 
-
if (! window.focus)return true;
 
-
var href;
 
-
if (typeof(mylink) == 'string')
 
-
  href=mylink;
 
-
else
 
-
  href=mylink.href;
 
-
window.open(href, windowname, 'width=640,height=480,scrollbars=yes');
 
-
return false;
 
-
}
 
-
</script>
 
-
</html>
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-
<div id="home">
+
-
<html>
 
-
<div class="alert-box">
 
-
Our wiki has been frozen. For future updates we advise you to redirect to iGEM's <a href="https://2008.igem.org/Main_Page">Main Page</a>. To follow our adventure at the Jamboree in Boston, keep an eye on our online <a href="http://igemkuleuven.wordpress.com/">BLOG</a>.
 
-
</div>
 
-
</html>
 
-
<br />
+
<a href="https://2009.igem.org/Team:EPF-Lausanne/Future_directions" onMouseOver="document.MyImage5.src='https://static.igem.org/mediawiki/2009/thumb/5/5b/Future.jpg/100px-Future.jpg';" onMouseOut="document.MyImage5.src='https://static.igem.org/mediawiki/2009/thumb/c/cd/Future_nb.jpg/100px-Future_nb.jpg';">
 +
<img src="https://static.igem.org/mediawiki/2009/thumb/c/cd/Future_nb.jpg/100px-Future_nb.jpg" name="MyImage5"></a>
-
<html>
 
-
<!-- HEADER -->
 
-
<div id="home-header"  style="overflow:hidden">
 
-
<!-- COUNTDOWN -->
+
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
-
<div class="countdown">
+
-
<div style="float:left;clear:both">
+
-
<embed src="http://www.oneplusyou.com/bb/files/countdown/countdown.swf?co=075A90&date_month=11&date_day=09&date_year=1&un=IGEM JAMBOREE 2008&size=normal&mo=11&da=09&yr=2008" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" width="240" height="80" wmode="transparent"></embed>
+
-
</div>
+
-
<div style="float:left;clear:both;background:white;width:240px;height:20px"></div>
+
-
</div>
+
-
<h2>Welcome to the KULeuven IGEM 2008 Homepage!</h2>
 
-
<p>Enjoy the hard work we delivered, feel free to contact us at <a href="mailto:igem@kuleuven.be?SUBJECT=IGEM 2008">igem@kuleuven.be</a> and visit our university/sponsor (<a href="http://www.kuleuven.be/bioscenter">BioSCENTer</a>) <a href="http://www.kuleuven.be/bioscenter/igem"><b>iGEM page</b></a>!</p>
 
-
</div>
+
<a href="https://2009.igem.org/Team:EPF-Lausanne/References" onMouseOver="document.MyImage9.src='https://static.igem.org/mediawiki/2009/thumb/a/a2/Ref.jpg/100px-Ref.jpg';" onMouseOut="document.MyImage9.src='https://static.igem.org/mediawiki/2009/thumb/2/25/Ref_nb.jpg/100px-Ref_nb.jpg';">
 +
<img src="https://static.igem.org/mediawiki/2009/thumb/2/25/Ref_nb.jpg/100px-Ref_nb.jpg" name="MyImage9"></a>
-
<!-- MAIN -->
+
</center>
-
<div id="home-main">
+
</html>
-
 
+
<br>
-
<!-- CONTENT -->
+
----
-
<div id="home-content">
+
-
 
+
-
<!-- CONTENT: BIOSCENTER -->
+
-
<div id="bioscenter-box">
+
-
    <h3>Synthetic Biology: BioSCENTer and iGEM</h3>
+
-
    <ul>
+
-
    <li><a href="#bioscenter-1"><span>On Synthetic Biology</span></a></li>
+
-
    <li><a href="#bioscenter-2"><span>On IGEM</span></a></li>
+
-
    </ul>
+
-
 
+
-
<!-- CONTENT: BIOSCENTER: SYNTHETIC BIOLOGY -->
+
-
<div id="bioscenter-1">
+
-
<p>
+
-
<a href="http://syntheticbiology.org">Synthetic biology</a> is a new challenge in biosciences. It combines biology and engineering principles to design and build new biological functions and systems. Examples are abound: cancer cell invading bacteria, microbes that take pictures, antimalarial drug producers,... The advantage of using living systems for these purposes is that, once they are designed and built, they are self-reproducible. The challenge, however, lies exactly within the design and construction: making biological circuits and devices as robust and predictive as their electrical counterparts. <a href="http://www.kuleuven.be/bioscenter/igem/?go=syntheticbiology">...</a>
+
-
</p>
+
-
<ul class="more">
+
-
<li><a href="http://www.kuleuven.be/bioscenter/igem/?go=syntheticbiology">Read the whole page</a></li>
+
-
</ul>
+
-
</div>
+
-
 
+
-
 
+
-
<!-- CONTENT: TEAM -->
+
-
<div id="team-box">
+
-
    <h3>The Team</h3>
+
-
    <ul>
+
-
    <li><a href="#team-1"><span>Meet the team</span></a></li>
+
-
    </ul>
+
-
 
+
-
<!-- CONTENT: TEAM: IMAGE MAP -->
+
-
<div id="team-1">
+
-
<p>
+
-
The KULeuven team consists of 12 enthusiastic students selected out of three faculties, 4 civil engineers, 4 bio-engineers and 4 biochemists. More information on the team members can be found on the <a href="https://2008.igem.org/Team:KULeuven/Team/Students">Students page</a> or by scrolling over the heads of the students.
+
-
</p>
+
-
<script>
+
-
function haxbackground(){
+
-
    document.getElementById('cartoonmap').style.backgroundImage='url(https://static.igem.org/mediawiki/2008/1/17/StudentsKULBlackWhite.JPG)';
+
-
}
+
-
function unhaxbackground(){
+
-
    document.getElementById('cartoonmap').style.backgroundImage="url('https://static.igem.org/mediawiki/2008/5/57/StudentsKUL.JPG')";
+
-
}
+
-
</script>
+
-
<dl id="cartoonmap">
+
-
 
+
-
    <dt>Maarten Breckpot</dt>
+
-
    <dd id="maarten"><a href="https://2008.igem.org/User:Maarten" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Maarten Breckpot</div>
+
-
        <div class="rest"> <br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Applied Sciences and Engineering – Mathematical Engineering </font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
    <dt>Nick Van Damme</dt>
+
-
    <dd id="nick"><a href="https://2008.igem.org/User:Nickvd" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Nick Van Damme</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Applied Sciences and Engineering – Mathematical Engineering </font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Benjamien Moeyaert</dt>
+
-
    <dd id="benjamien"><a href="https://2008.igem.org/User:Bmoeyaert" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Benjamien Moeyaert</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 3rd Bachelor of Biochemistry and Biotechnology</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Stefanie Roberfroid</dt>
+
-
    <dd id="stefanie"><a href="https://2008.igem.org/User:Stefanie" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Stefanie Roberfroid</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 3rd Bachelor of Bioscience Engineering – Biomolecular Engineering</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Dries Vercruysse</dt>
+
-
    <dd id="dries"><a href="https://2008.igem.org/User:Dries" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Dries Vercruysse</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Applied Sciences and Engineering - Nanoscience and Nanotechnology</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Andim Doldurucu</dt>
+
-
    <dd id="andim"><a href="https://2008.igem.org/User:Andim" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Andim Doldurucu</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Bioscience Engineering – Nanoscience and Nanotechnology</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Turkey </font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Hanne Tytgat</dt>
+
-
    <dd id="hanne"><a href="https://2008.igem.org/User:Hanne" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Hanne Tytgat</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 3rd Bachelor of Biochemistry and Biotechnology</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Elke Van Assche</dt>
+
-
    <dd id="elke"><a href="" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Elke Van Assche</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 3rd Bachelor of Bioscience Engineering – Biomolecular Engineering</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Jan Mertens</dt>
+
-
    <dd id="jan"><a href="https://2008.igem.org/User:Jotaro" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Jan Mertens</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Bioscience Engineering – Biomolecular Engineering</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Nathalie Busschaert</dt>
+
-
    <dd id="nathalie"><a href="https://2008.igem.org/User:BNathalie" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Nathalie Busschaert</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 3rd Bachelor of Chemistry </font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Jonas Demeulemeester</dt>
+
-
    <dd id="jonas"><a href="https://2008.igem.org/User:Zeunas" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Jonas Demeulemeester</div>
+
-
        <div class="rest"><br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 1st Master of Biochemistry and Biotechnology</font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font> </div></span>
+
-
    </a></dd>
+
-
 
+
-
        <dt>Antoine Vandermeersch</dt>
+
-
    <dd id="antoine"><a href="https://2008.igem.org/User:Avdmeers" onmouseover="haxbackground();" onmouseout="unhaxbackground();">
+
-
        <span><div class="first">Antoine Vandermeersch</div>
+
-
        <div class="rest">
+
-
                <br> <b><font size="2.5">Studies:</font></b> <br> <font size="2"> 2nd and 3rd Bachelor of Applied Sciences and Engineering – Electrical and Materials Engineering </font> <br> <b><font size="2.5">Country:</font></b> <br> <font size="2"> Belgium</font>
+
-
                </div></span>
+
-
    </a></dd>
+
-
</dl>
+
-
 
+
-
 
+
-
</div>
+
-
 
+
-
</div>
+
-
 
+
-
<!-- CONTENT: PROJECT -->
+
-
<div id="project-box">
+
-
    <h3>The Project</h3>
+
-
    <ul>
+
-
    <li><a href="#project-1"><span>Project</span></a></li>
+
-
    </ul>
+
-
 
+
-
<!-- CONTENT: PROJECT: SUBSYSTEMS -->
+
-
<div id="project-1">
+
-
<p>
+
-
Our team’s project is Dr. Coli, an E. coli bacterium that produces a drug when and where it is needed in the human body. It does this in an intelligent way, such that the drug production meets the individual patient’s needs. And when the patient is cured, Dr. Coli eliminates itself from the body. To achieve this goal we divided our project into several subsystems. A detailed description about every subsystem can be found by clicking on one of the following pictograms.
+
<br>
<br>
-
<center>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/Input">
 
-
<img src="https://static.igem.org/mediawiki/2008/a/a9/Pictogram_input.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>INPUT:</b> <br> The input mechanism makes use of the red light detector, used because of the possibility of easy and rapid switching between ON and OFF state. This input serves as a dummy input for e.g. inflammation signaling molecules.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
></a>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/Output">
 
-
<img src="https://static.igem.org/mediawiki/2008/d/db/Pictogram_output.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>OUTPUT:</b> <br> GFP is an easy-to-measure output mechanism. To lower the stability of GFP, the C-terminal LVA tag is applied. This output serves as a dummy output for e.g. peptide drugs.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<a href="href="https://2008.igem.org/Team:KULeuven/Project/Filter">
 
-
<img src="https://static.igem.org/mediawiki/2008/e/ed/Pictogram_filter.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>FILTER:</b> <br> The filter system is made to make the system irresponsive to background input. We do not want Dr. Coli to react on noise signals. The filter makes use of a coherent feed-forward loop with AND-gate, based on T7 RNA polymerase and the RiboKey/-Lock system.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/Inverter">
 
-
<img src="https://static.igem.org/mediawiki/2008/e/e7/Pictogram_inverter.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>INVERTIMER:</b> <br> For some of the following subsystems, an inverter is needed. It is based on a promoter repressor and also makes use of a C-terminal LVA tag for better responsiveness of the system. This was proven necessary by rigorous modelling.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/Reset">
 
-
<img src="https://static.igem.org/mediawiki/2008/e/ed/Pictogram_reset.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>RESET:</b> <br> When input re-emerges during the self-elimination process, the dying process is stopped and reset. This will allow Dr. Coli to come back from its decision of no longer being needed.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/CellDeath">
 
-
<img src="https://static.igem.org/mediawiki/2008/c/c6/Pictogram_celldeath.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>CELL DEATH:</b> <br> After a longer period without input signal, Dr. Coli decides to stop living because he feels himself no longer necessary. And in fact, as the patient is now cured, he is no longer of any need to the patient.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<a href="https://2008.igem.org/Team:KULeuven/Project/Memory">
 
-
<img src="https://static.igem.org/mediawiki/2008/c/c2/Pictogram_memory.png" width="50" height="50"
 
-
onmouseover="CngTxt('Txt','<b>MEMORY:</b> <br> As Dr. Coli does not want to die from the moment he is born, he can memorize whether he has already been active or not. If not, he will not die without input signal, thus being able to live previous to encoutering illness.')"
 
-
onmouseout="CngTxt('Txt')"
 
-
>
 
-
</a>
 
-
<style type="text/css">
+
<html><center>
-
#Txt {color:darkblue;}
+
<font size="12" color="#007CBC">Abstract</font>
-
</style>
+
</center></html>
 +
<br>
 +
----
<br>
<br>
<br>
<br>
-
<div id="Txt" style="width:350px;height:120px;border:solid darkblue 1px"><br>scroll over the pictograms to get a short description or click on them to go to the corresponding page</font></div>
 
-
</center>
 
-
</p>
 
-
</div>
 
-
</div>
+
== Abstract ==
 +
<div style="text-align:justify;">
-
<!-- CONTENT: MODELING -->
+
Light-sensitive proteins can be readily found in nature, but despite their tremendous biotechnological potential, they have so far rarely been studied in much detail. In this project, our aim is to demonstrate the ability of light-sensitive '''fusion proteins''' to '''regulate gene expression through light control'''. For this purpose, we selected the '''LovTAP hybrid protein''', designed by [https://2009.igem.org/Team:EPF-Lausanne/References Strickland et al.] and made available to us by Prof. Sosnick from the University of Chicago.
-
<div id="modeling-box">
+
-
    <h3>Modeling</h3>
+
-
    <ul>
+
-
    <li><a href="#modeling-1"><span>Introducing engineering</span></a></li>
+
-
    <li><a href="#modeling-2"><span>Adding reality</span></a></li>
+
-
    <li><a href="#modeling-3"><span>Assembling the model</span></a></li>
+
-
    </ul>
+
-
<!-- CONTENT: MODELING: ENGINEERING -->
+
The underlying strategy leading to the generation of this hybrid protein was to fuse a '''light-sensitive domain''' (''Lov'' in this case) with a '''regulatory domain''' (here the ''Trp repressor'') such that the two domains share a continuous helix. This procedure enabled the creation of an '''allosteric switch''' whereby the shared helix acts as a rigid lever arm. Upon light induction, a ''conformational change'' is transmitted from the light-sensitive to the DNA-binding domain, which ultimately results in an ''increase'' of the regulatory domain's affinity for its respective DNA binding site.
-
<div id="modeling-1">
+
-
<img class="floatright" width="140" heigth="170" src="https://static.igem.org/mediawiki/2008/4/4e/Model_homepage.PNG" />
+
-
<p>
+
-
The most important assets of our project are the different control mechanisms. Since these are very much dependent on kinetic and other constants, Dr. Coli heavily relies on proper <a href="https://2008.igem.org/Team:KULeuven/Model/Overview">modeling</a>. Our Dry-Lab team has spent its summer setting up a computational model of Dr. Coli to completely simulate his actions. We constructed models of all the subsystems (components) in both CellDesigner and Matlab. All these subsystems have been characterised by their ODE's and have been simulated thoroughly. Together they form our <a href="https://2008.igem.org/Team:KULeuven/Model/FullModel">full model</a> of Dr. Coli. These models are only capable of simulating the behaviour of one Dr. Coli cell, so we implemented our own Software Tool that can work with <a href="https://2008.igem.org/Team:KULeuven/Model/MultiCell">multi cellular models</a>.
+
-
</p>
+
-
</div>
+
-
<div id="modeling-2">
+
Here, for the first time, we demonstrate that the '''LOVTap fusion protein is functional''' ''in vivo'' '''''' based on the fact that we were able to implement small, genetic networks in ''E. coli'' which respond to light through the LOVTap protein. In addition, we used molecular dynamics simulations to further analyze the conformational changes between the activated and de-activated state (which is generally very unstable). These efforts identified specific amino acid residues that could be mutated to further improve the stability of the fusion protein and thus its '''"ON/OFF"''' characteristics and we are currently testing the latter predictions ''in vivo''.
-
<p style="text-align:center">
+
-
<img src="https://static.igem.org/mediawiki/2008/8/86/5652strip.gif" border="0" alt="Parameters are everything" />
+
-
</p>
+
-
<p>
+
-
After building the model frame, it was time to add the physical relevance to it. Kinetic constants were searched for and investigated by means of previous iGEM teams (e.g. <a href="http://parts.mit.edu/igem07/index.php?title=ETHZ/Parameters">ETHZ 2007</a>), the parts characterizations on the Registry of Standard Biological Parts and popular biological literature databases such as <a href="http://www.hubmed.org">Hubmed</a>, ...
+
-
Our own contribution would revolve around <a href="https://2008.igem.org/Team:KULeuven/Data/Overview">data analysis</a> of the produced parts.
+
-
</p>
+
-
</div>
+
-
 
+
-
<div id="modeling-3">
+
-
<p style="text-align:center">
+
-
<img src="https://static.igem.org/mediawiki/2008/f/f8/10797strip.gif" border="0" alt="Dilbert.com" />
+
-
</p>
+
-
<p>
+
-
Working with concepts as modularity and abstraction, we worked out every subsystem (Output, Memory, Filter, ...) to eventually merge them all in our <a href="https://2008.igem.org/Team:KULeuven/Model/FullModel">full model</a>. By trial and error the system was adapted to achieve desired output quantities (amount of molecules, proteins, ...) given a representative input.
+
-
</p>
+
-
<p>
+
-
To take it a step further, a <a href="https://2008.igem.org/Team:KULeuven/Model/MultiCell">multi-cell model</a> was build, to analyse crucial steps in cell division (e.g. Memory inheritance).
+
-
A <a href="https://2008.igem.org/Team:KULeuven/Model/Diffusion">diffusion model</a> was made to investigate HSL diffusion towards neighbouring cells and see what effects this generated on their <a href="https://2008.igem.org/Team:KULeuven/Project/Inverter">Invertimer</a> system.
+
-
</p>
+
-
</div>
+
</div>
</div>
 +
<br><br><br>
-
</div><!-- END CONTENT -->
+
==Advantages==
 +
<div style="text-align:justify;">
 +
The advantages of such a system are :
 +
* '''easy to use''': we just need to shine light onto the system
 +
*'''precise in space''': we can choose the exact localization of the ray, which can be as thin as a laser beam (a fraction of a mm), but can also cover a larger surface, depending on the need.
 +
*'''precise in time''': contrary to a ligand-based DNA-binding protein, we can clearly see the advantage of using this method. Indeed, as soon as the light is switched off, the shift will convert back, and the signal will be almost instantly stopped (provided that the switch is ''reversible'' of course).
 +
*'''reversible''': it acts as a simple switch
 +
*'''fast''': there is no ''intermediate/additional reaction'' that has to take place, so the response to the light stimulus is straightforward and immediate.
 +
*'''cheap''': you only need a light source, no need of additional equipment to control the spread of a ligand for example. A couple of LEDs with the right wavelength will do the trick!
</div>
</div>
-
</html>
 
-
 
-
<!-- SIDEBAR -->
 
-
<div id="home-sidebar">
 
-
 
-
<html>
 
-
<!-- BEGIN CBOX - www.cbox.ws - v001 -->
 
-
<div id="cboxdiv" style="text-align: center; line-height: 0">
 
-
<div><iframe frameborder="0" width="190" height="145" src="http://www4.cbox.ws/box/?boxid=3561013&amp;boxtag=4303&amp;sec=main" marginheight="2" marginwidth="2" scrolling="auto" allowtransparency="yes" name="cboxmain" style="border:#075A90 1px solid;" id="cboxmain"></iframe></div>
 
-
<div><iframe frameborder="0" width="190" height="75" src="http://www4.cbox.ws/box/?boxid=3561013&amp;boxtag=4303&amp;sec=form" marginheight="2" marginwidth="2" scrolling="no" allowtransparency="yes" name="cboxform" style="border:#075A90 1px solid;border-top:0px" id="cboxform"></iframe></div>
 
-
</div>
 
-
<!-- END CBOX -->
 
-
</html>
 
-
 
<br>
<br>
-
<!-- SIDEBAR: INTERESTING LINKS -->
+
<br><br>
-
<div class="sidebox">
+
-
<h3>Interesting Links</h3>
+
-
<ul class="external-links">
+
-
<li>[http://www.nature.com/nature/comics/syntheticbiologycomic/index.html Synthetic Biology comic]</li>
+
-
<li>[http://partsregistry.org/Main_Page Registry of Standard Biological Parts]</li>
+
-
<li>[http://www.kuleuven.be/bioscenter BioSCENTer]</li>
+
-
</ul>
+
-
<ul class="general-links">
+
-
<li>[[Team:KULeuven/Software/MultiCell|KUL MultiCell Toolbox]]</li>
+
-
<li>[[Team:KULeuven/Software/Simbiology2LaTeX|KUL Simbiology2LaTeX Toolbox]]</li>
+
-
<li>[[Team:KULeuven/Tools/Navigation_Bar|KUL Dropdown (utility)]]</li>
+
-
<li>[[Team:KULeuven/Tools/New_Day/Date_Retriever|KUL Notebook (utility)]]</li>
+
-
</ul>
+
-
</div>
+
-
<html>
+
==Results Highlights==
-
<!-- SIDEBAR: FUN STUFF -->
+
-
<div class="sidebox fun-stuff">
+
-
<h3>Fun Stuff</h3>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/5/50/Microbe-kombat.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/a/aa/Microbe-kombat.png">Microbe Kombat</a>
+
-
</p>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/8/81/Bacteria.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/1/10/Bacteria_Cannibals.png">Bacteria Cannibals</a>
+
-
</p>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/4/46/Dna-double_helix.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/1/1b/Helix-intro.png">Double Helix</a>
+
-
</p>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/f/f6/Bacteria_pairs.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/e/e5/Bacteria_pairs.PNG">Bacteria Pairs</a>
+
-
</p>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/8/85/Bacteria_solitaire.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/d/d9/Bacteria_solitaire.PNG">Bacteria Solitaire</a>
+
-
</p>
+
-
 
+
-
<p>
+
-
<a href="https://static.igem.org/mediawiki/2008/1/12/MathAttack.swf" onClick="return popup(this,'notes')"><img src="https://static.igem.org/mediawiki/2008/e/e7/Math_Attack.png">Math Attack</a>
+
-
</p>
+
-
 
+
-
<ul class="general-links">
+
-
<li><a href="http://www.youtube.com/watch?v=x5yPkxCLads" target="blank">PCR song</a></li>
+
-
</ul>
+
 +
<div style="text-align:justify;">
 +
The main achievements of our team this year are:
 +
* We successfully designed, synthesized and characterized our '''read-out system n°1''' and sent this part to the Registry. More information on the [https://2009.igem.org/Team:EPF-Lausanne/LOVTAP_Results#Characterization_of_Read-Out_n.C2.B01 Results page] or under [https://2009.igem.org/Team:EPF-Lausanne/Parts Parts submitted to the Registry].
 +
* We successfully designed, synthesized and characterized our '''read-out system n°2''', and sent the DNA to the Registry. More details under [https://2009.igem.org/Team:EPF-Lausanne/LOVTAP_Results#Characterization_of_Read-Out_n.C2.B02 Results] or [https://2009.igem.org/Team:EPF-Lausanne/Parts Parts submitted to the Registry].
 +
* We successfully cloned the '''LovTap gene''' into a BioBrick, and designed, synthesized and characterized our main light inducible '''LovTap BioBrick''', which we also sent to the Registry. Check out the [https://2009.igem.org/Team:EPF-Lausanne/LOVTAP_Results#Characterization_of_the_entire_system Results page] or look under [https://2009.igem.org/Team:EPF-Lausanne/Parts Parts submitted to the Registry] for more details on how we did all this.
 +
* We validated a set of parameters for the molecular dynamic simulations on both states of the LOV domain. More details under the [[https://2009.igem.org/wiki/index.php?title=Team:EPF-Lausanne/Results/EDS#Validation_of_dark_state_simulation validation of the dark state]]
 +
* We investigated an approach to test the stability of the bond to the chromophore using simple molecular dynamic. That leaves a broad perspective of improvement of the fusion protein stability by testing them in silico. Please see the [[https://2009.igem.org/wiki/index.php?title=Team:EPF-Lausanne/Results/Mutations#Motivation Mutation page in modeling]] for more informations.
 +
* We managed to obtain a '''mutated version of the LovTap gene''', which should give a more stable protein than the original one, and sent the part to the Registry. For more information about the experiments that we will conduct, look at the [https://2009.igem.org/Team:EPF-Lausanne/Future_directions Future directions] and check out our poster at the Jamboree.
</div>
</div>
-
</html>
 
-
 
-
<!-- SIDEBAR: NOTEBOOK -->
 
-
<div class="sidebox">
 
-
<h3>Notebook ({{CURRENTMONTHNAME}})</h3>
 
-
<div>
 
-
{{#calendar:query=preload=:Team:KULeuven/Tools/New_Day|title=Team:KULeuven|year=2008|month={{CURRENTMONTH}} }}
 
-
</div>
 
-
</div>
 
-
 
-
<html>
 
-
<!-- SIDEBAR: VISITORS -->
 
-
<div class="visitors">
 
-
<h3>Visitors &nbsp; &nbsp; &nbsp; &nbsp; <a id="geo" target="blank" href="http://www.searchandgo.com/geo/"><img src="http://www.searchandgo.com/geo/factory.php" rel="nofollow" alt="Visitor locations"></a></h3>
 
-
<ul>
 
-
<li><strong>Amount:</strong> &nbsp; <a><img src="http://www.yourhitstats.com/Buy_Links-3717204.png" rel="nofollow" alt="Amount of visitors"></a></li>
 
-
<li><a target="blank" href="http://www4.clustrmaps.com/counter/maps.php?url=https://2008.igem.org/Team:KULeuven" rel="nofollow" id="clustrMapsLink"><img src="http://www4.clustrmaps.com/counter/index2.php?url=https://2008.igem.org/Team:KULeuven" style="border:0px;" alt="Locations of visitors to this page" title="Locations of visitors to this page" id="clustrMapsImg" onerror="this.onerror=null; this.src='http://www2.clustrmaps.com/images/clustrmaps-back-soon.jpg'; document.getElementById('clustrMapsLink').href='http://www2.clustrmaps.com';" /></a></li>
 
-
</div>
 
-
</html>
 
-
 
-
</div><!-- END SIDEBAR -->
 
-
 
-
</div><!-- END HOME -->
 
-
 
-
 
-
 
-
 
-
 
-
 
-
== What we want to do ==
 
-
 
-
Light-sensitive proteins can easily be found in nature, but they have never been cloned into other cells. In this project, our aim is to design a fusion protein that would allow genetic regulation through light control.
 
-
 
-
Therefore we are working on cloning strategies that would allow us to fuse a light-sensitive domain (LovTAP in our case) with a regulatory domain (like the Trp operon). The idea is to allow transmission of the conformational change induced by light (on the light-sensitive domain) to the DNA-binding domain. This transmitted conformational change would then result in an increase or decrease of the regulatory domain's affinity for the DNA promoter site.
 
-
 
-
The overal effect would thus be a genetic expression controlled by light! There would be many applications to such a "switch" : it could kill bacteria at a certain point, stop their growth, or make them express specific proteins...
 
-
 
-
To improve the change induced by light (which is generally very unstable), we also plan a modeling part where the aim is to find which residue we would have to mutate in order to have a stable protein after the switch.
 
-
 
-
The advantage of such a system is that we could apply the light on a system and then remove it (not like if we added some liquid on the cells).
 
-
 
-
 
-
 
-
==Project Abstract==
 
-
Recent discoveries of photoreceptors in many organisms gave us insights into a possible interest of using light responsive genetic tools in synthetic biology.
 
-
The final goal of our project is to induce a change in gene expression, more specifically to turn a gene on or off, in a living organism in response to a light stimulus.
 
-
 
-
We will use light sensitive DNA binding proteins, or light sensitive proteins that activate DNA binding proteins to transduce a light input into a chosen output, for example reporter genes like GFP, RFP.
 
-
The genetic circuits allowing us to measure the activity and responsiveness of light sensitive proteins are already designed, whereas the parts and biobricks required to engineer these circuits are still in formation.
 
-
 
-
If we demonstrate that the light-induced-gene switch tool works in vivo, it would show that easier and faster tools could be used in several fields of biology. It would induce more localized, more precise (time resolution) and drastically faster genetic changes than the current used tools, which will then allow research to evolve even better.
 
-
 
-
 
-
 
-
 
-
 
-
 
</div><div CLASS="epfl09bouchon"></div>
</div><div CLASS="epfl09bouchon"></div>

Latest revision as of 21:44, 21 October 2009

Contents







                                                               



Abstract




Abstract

Light-sensitive proteins can be readily found in nature, but despite their tremendous biotechnological potential, they have so far rarely been studied in much detail. In this project, our aim is to demonstrate the ability of light-sensitive fusion proteins to regulate gene expression through light control. For this purpose, we selected the LovTAP hybrid protein, designed by Strickland et al. and made available to us by Prof. Sosnick from the University of Chicago.

The underlying strategy leading to the generation of this hybrid protein was to fuse a light-sensitive domain (Lov in this case) with a regulatory domain (here the Trp repressor) such that the two domains share a continuous helix. This procedure enabled the creation of an allosteric switch whereby the shared helix acts as a rigid lever arm. Upon light induction, a conformational change is transmitted from the light-sensitive to the DNA-binding domain, which ultimately results in an increase of the regulatory domain's affinity for its respective DNA binding site.

Here, for the first time, we demonstrate that the LOVTap fusion protein is functional' in vivo ' based on the fact that we were able to implement small, genetic networks in E. coli which respond to light through the LOVTap protein. In addition, we used molecular dynamics simulations to further analyze the conformational changes between the activated and de-activated state (which is generally very unstable). These efforts identified specific amino acid residues that could be mutated to further improve the stability of the fusion protein and thus its "ON/OFF" characteristics and we are currently testing the latter predictions in vivo.




Advantages

The advantages of such a system are :

  • easy to use: we just need to shine light onto the system
  • precise in space: we can choose the exact localization of the ray, which can be as thin as a laser beam (a fraction of a mm), but can also cover a larger surface, depending on the need.
  • precise in time: contrary to a ligand-based DNA-binding protein, we can clearly see the advantage of using this method. Indeed, as soon as the light is switched off, the shift will convert back, and the signal will be almost instantly stopped (provided that the switch is reversible of course).
  • reversible: it acts as a simple switch
  • fast: there is no intermediate/additional reaction that has to take place, so the response to the light stimulus is straightforward and immediate.
  • cheap: you only need a light source, no need of additional equipment to control the spread of a ligand for example. A couple of LEDs with the right wavelength will do the trick!




Results Highlights

The main achievements of our team this year are:

  • We successfully designed, synthesized and characterized our read-out system n°1 and sent this part to the Registry. More information on the Results page or under Parts submitted to the Registry.
  • We successfully designed, synthesized and characterized our read-out system n°2, and sent the DNA to the Registry. More details under Results or Parts submitted to the Registry.
  • We successfully cloned the LovTap gene into a BioBrick, and designed, synthesized and characterized our main light inducible LovTap BioBrick, which we also sent to the Registry. Check out the Results page or look under Parts submitted to the Registry for more details on how we did all this.
  • We validated a set of parameters for the molecular dynamic simulations on both states of the LOV domain. More details under the [validation of the dark state]
  • We investigated an approach to test the stability of the bond to the chromophore using simple molecular dynamic. That leaves a broad perspective of improvement of the fusion protein stability by testing them in silico. Please see the [Mutation page in modeling] for more informations.
  • We managed to obtain a mutated version of the LovTap gene, which should give a more stable protein than the original one, and sent the part to the Registry. For more information about the experiments that we will conduct, look at the Future directions and check out our poster at the Jamboree.