Team:Slovenia/Coiledcoil polyhedra.html
From 2009.igem.org

Topology of twodimensional lattice made of single type of polypeptide chain
Figure 1 The same structure assembles if we use aba’, aBa’, AbA’, AbC, abc or any of their cyclic permutations. Some of the above polypeptide chains can generate also hexagonal lattice, for example: aba’, aBa’ and aBa and some cyclic permutations. Figure 2 We could also use any of the following polypeptide chains: AbC, abc and aBa or certain permutations. Hexagonal lattice seems to be the most common among the inspected lattices, since it can obviously be assembled of many different chains in a few different ways depending on the location of parallel and antiparallel elements within the chain. For general overview of all inspected combinations see #Enumeration of all possible combinations for the assembly of structures made of single polypeptide chain and three coiledcoil forming segments Note that in the examples above we have inspected only assemblies composed of one polypeptide chain type composed of three coiledcoilforming elements. A whole lot more structures can be assembled if we allow the use of two, three,.. different chains with different number of elements. For more information #Extension to selfassemblies made of several different polypeptide chains Creating threedimensional polygons from a single type of polypeptide chain
[click on image to play] It should be noted that all of the cyclic permutations are also possible to form this type of polyhedra. The next structure that can be obtained is nsided prism, where the n depends on the polypeptide concentration, temperature and length of the linker (among other parameters). Some types of chains (combinations of coiledcoilforming segments) even predefine whether n can be even or odd (i.e. aba’ forms prisms with even number of sides, contrary to aBa’ where there are no limitations on the accessible number of sides). This assembly is possible to obtain from different ways – below is presented example aba’, which can form a box (parallelepiped) as the smallest polyhedron of this type of polypeptide chain: Figure 3 It seems that these are all 3D structures one can form using only above stated type of chains. For generalization follow the link #Extension to selfassemblies made of several different polypeptide chains For discussion about how to encourage the formation of 3D structures follow the link #Extension to selfassemblies made of several different polypeptide chains [click on image to play] Enumeration of all possible combinations for the assembly of structures made of single polypeptide chain and three coiledcoil forming segments
Extension to selfassemblies made of several different polypeptide chains
Example A Example B Example C Example D All of these examples derive from the same threearmed motif but can assemble into topologically very different structures. Here we also present an idea how to provide greater control of the selectivity between forming 2D lattice or 3D polyhedra by altering the AA sequence and making the link between elements more or less flexible. As shown previously on the example of DNA (He et al., 2008) it can be expected that the more rigid the link the more likely it is to create planar lattice. Therefore it is crucial that there is no flexible linker between elements P6P2, P3P5 and APHNZ (as presented in example below) and that one helix continues into the other, creating one superelement. The advantage of this design is that we control the angles and can therefore assemble lattice with higher symmetry. Figure 4 In this manner we can expect creation of the following planar structures: Figure 5: Example A and B Figure 6: Example C and D In order to allow the extension into the third dimension we need the linkers between elements to allow flexibility. In this way we can form theoretically any regular polyhedron with threearmed motifs in the vertexes. Below you can see the formation of a cube, formed from the elements in the Example D: Figure 7: Cube 