Team:SupBiotech-Paris/Modeling du traitement
From 2009.igem.org
(→Cinquième étape : L’internalisation du vecteur cellulaire) |
(→Evolution en simultanée du DVS et d'une tumeur) |
||
Line 148: | Line 148: | ||
- Npl, le nombre de [[Team:SupBiotech-Paris/Concept2Fr#drapeau|vecteurs cellulaires]] libérés par [[Team:SupBiotech-Paris/Concept1Fr#drapeau|bactérie]].<br> | - Npl, le nombre de [[Team:SupBiotech-Paris/Concept2Fr#drapeau|vecteurs cellulaires]] libérés par [[Team:SupBiotech-Paris/Concept1Fr#drapeau|bactérie]].<br> | ||
</div> | </div> | ||
- | On peut négliger | + | On peut négliger (aux vues des différences entre les échelles de temps ou d’espace) certains facteurs :<br> |
<div style="margin-left: 100px;"> | <div style="margin-left: 100px;"> | ||
- Kdeg, la constante de dégradation du phage, car tous les phages sont internalisés en 10s.<br> | - Kdeg, la constante de dégradation du phage, car tous les phages sont internalisés en 10s.<br> |
Revision as of 16:15, 20 October 2009
Modélisation de l'efficacité du DVS sur une tumeur du poumon
Contexte
Le cancer du poumon non à petites cellules, ou NSCLC, est un cancer dit agressif, avec une vitesse de développement relativement forte. Les traitements sont souvent inefficaces, car le développement de la tumeur est plus rapide que son élimination par les médicaments.
Objectif
Nous avons décidé de modéliser l’efficacité de notre traitement face à ce type de tumeur. Pour cela, nous avons modélisé l’évolution de la tumeur, l’évolution de notre traitement et son efficacité.
L’objectif de la modélisation est de vérifier si notre traitement est capable d’éliminer la tumeur dans son intégralité.
Segmentation du modèle
Pour commencer, il a fallu retracer le schéma d’action complet du DVS et l’évolution de la tumeur. Ensuite, pour chaque étape du traitement, nous avons identifié l'ensemble des paramètres qui entrent en jeu, leurs actions et leurs interactions, afin de déterminer les équations du modèle.
Pour simplifier l’équation, tout en dressant un modèle réaliste, il nous a fallu découper chaque étape et les modéliser séparément.
Première étape : le développement de la tumeur en fonction du temps
On considère la tumeur non métastasique et sa croissance exponentielle.
Soit une tumeur de volume V1 en cm3 à un instant t1.
Soit la même tumeur, à un instant t2, avec un volume V2.
La tumeur est considérée en phase de croissance exponentielle et sans métastase donc l’équation qui régit son développement, le Tumor Growth Rate (TGR), est égal à :
Ainsi, le Volume de la tumeur en fonction du temps (V(t)) est égal à :
Enfin, connaissant le Volume moyen d’une Cellule Cancéreuse (Vcc) (obtenu expérimentalement), on peut déterminer, si l’on considère la tumeur comme pleine (c'est-à-dire sans cavité ou vaisseau sanguin), que le Nombre de cellules cancéreuses en fonction du temps (Nc(t)), sans action du traitement, est égal à :
Deuxième étape : Le développement du vecteur tissulaire
Le vecteur tissulaire est injecté au patient à un temps t, proche de t2. Le Nombre de vecteurs injectés (Nbi) est de 1x10^6. Le tropisme pulmonaire du vecteur n’est pas parfait, seul un Pourcentage (Pp) va au poumon. Le nombre total de vecteurs tissulaires dans le corps augmente, car ce vecteur est de type bactérien et possède donc un Temps de Doublement (DTB).
On peut ainsi établir que le Nombre de vecteurs tissulaires dans les poumons (Nb(t)) est égal à :
Le nombre de vecteurs tissulaires augmente jusqu’à l’injection de la doxycycline, où dès lors ces derniers sont lysés pour libérer les vecteurs cellulaires dans le poumon.
Ce temps d’injection n’est pas anodin. En effet, si l’on attend suffisamment longtemps, le nombre de vecteurs tissulaires est suffisant pour éliminer la tumeur ou du moins la réduire de façon importante. A l'inverse, une dose de doxycycline plus importante (et donc potentiellement toxique) est nécessaire pour libérer une plus grande quantité de vecteurs cellulaires si l'on attend trop.
On peut ainsi se servir de la modélisation pour déterminer le Temps optimal d’Injection de la doxycyline (Tinj).
Troisième étape : La libération du vecteur cellulaire
Une fois la doxycycline injectée, le vecteur cellulaire est libéré. Le nombre de vecteurs cellulaires est proportionnel au nombre de vecteurs tissulaires dans le poumon. Or, on sait que la valeur moyenne de Phages recombinants libérés par M. avium (Npl) est de 100.
On peut écrire que le Nombre de vecteurs cellulaires au moment de l’injection (Np(Tinj)) est égal à :
Le nombre de vecteurs cellulaires ne croit pas comme pour le vecteur tissulaire. En effet, il décroit au fur et à mesure du temps, à cause de la stabilité du phage et de son internalisation cellulaire (pour libérer le plasmide thérapeutique).
Sa stabilité sanguine est égale à la Constante de Dégradation du phage (kdeg). Si l’on ajoute cette constante dans l’équation du Nombre de vecteurs cellulaires en fonction du temps (Np(t)) on obtient la formule suivante :
Les étapes de dispersion du phage dans la tumeur et d’internalisation cellulaire sont traitées à part entière (Quatrième et cinquième étape ci dessous) en raison de leur complexité.
Quatrième étape : La dispersion du vecteur cellulaire
On considère, pour notre modèle, que le sang est un fluide newtonien avec une vitesse Vmax constante au cours du temps. On néglige les à-coups cardiaques et les flux turbulents liés aux cavités de l’épithélium sanguin.
Le vecteur cellulaire se déplace selon deux axes. Un axe X dans le sens du flux sanguin et un axe Y, orthogonal à l’axe X.
SCHEMA DU REPERE GRAPHIQUE + FORCES MECANIQUES
Le déplacement en Y représente la diffusion du phage dans le sang. Il dépend donc de l'équation de la diffusion d'une particule (phage) dans un fluide (sang).
Avec n, le nombre de particule, et D, le coefficient de diffusion.
Le déplacement en X dépend, lui, uniquement de la propagation du flux sanguin dans le vaisseau. En effet, on néglige la diffusion qui a lieu également selon l'axe X car elle est 1000 fois inférieure à la propagation des particules dans le sang (liée à l'importance du flux sanguin). Les phages se déplacent à différentes vitesses réparties de façon parabolique allant de, Vmax au centre du vaisseau, à V0 contre la paroi du vaisseau.
SCHEMA DE REPARTITION DES VITESSES
Les vitesses des phages diminuent en se rapprochant des parois du vaisseau à cause des forces de frottements qui s'opposent au mouvement.
On peut donc déterminer en combien de temps la particule ayant une vitesse Vmax, c'est-à-dire la particule au centre du vaisseau, en atteint l'extrémité. On obtient ainsi le temps nécessaire à l’internalisation de tous les phages d’une bactérie.
Lorsque l'on associe le déplacement en Y (vitesse d'intégration) et le déplacement en X (vitesse du flux sanguin), on obtient, après intégration sur le périmètre d'un vaisseau sanguin, la surface d’action des vecteurs cellulaires issus d’un vecteur tissulaire. On est donc capable de savoir combien de cellules cancéreuses sont détruites pour 100 vecteurs cellulaires ou 1 vecteur tissulaire
La vitesse de diffusion du vecteur cellulaire, REDUITE A D (ADPRES SIMPLIFICATION ???)est égale à 0,5µm.s-1 or la taille d’un capillaire sanguin est de 10µm de diamètre. La particule la plus éloignée met donc 10s à atteindre la paroi du vaisseau.(CE QUI EST NEGLIGEABLE ETANT DONNE L'ECHELLE DE TEMPS OBSERVEE AVANT LA SYNTHESE DE P53).
Grâce à cette durée de diffusion (10s) et à la vitesse du flux sanguin (1x10^3µm.s-1) dans les capillaires, on peut déterminer :
- La longueur (L) couverte par les vecteurs cellulaireslibérés par un vecteur tissulaire.
- La surface (S) occupée par les phages dans un vaisseau sanguin de diamètre 2r.
L = 1 x 10^4 µm
2r = 10 µm
S = 2 π x L x r = 31,4x10^4µm²
Ainsi, un vecteur tissulaire peut potentiellement cibler plus de 31 000 cellules cancéreuses, or, il ne possède que 100 vecteurs cellulaires. On peut effectuer une simplification en disant que 100 vecteurs cellulaires détruisent 100 cellules cancéreuses et donc réduire l’équation de dispersion à une constante (NOM + VALEUR OU MOYEN DE DETERMINER LA VALEUR ??).
Une fois chaque phage ayant atteint la paroi, entre en jeu l’internalisation dont le modèle répond à deux schéma d’action.
Cinquième étape : L’internalisation du vecteur cellulaire
Une fois au contact de la cellule, le vecteur cellulaire a deux schémas d’action possibles.
- Le vecteur se fixe puis il se détache de la cellule.
- Le vecteur se fixe puis il se fait internaliser au sein de la cellule.
On peut modéliser cela en fonction du temps et des Constantes d’Association (kon) , de Dissociation (koff) et d’Internalisation (kint) .
Les étapes les plus courtes, en échelle de temps, sont certainement les étapes concernant le phage. L’internalisation est la plus courte d’entre elle, après avoir déterminé les constantes, on sait que plus de 320 vecteurs cellulairessont internalisés par seconde au contact d’une paroi.
On peut ainsi réduire cette équation en fonction du temps à une simple constante.(UNE CONSTANTE NE DEPEND PAS DU TEMPS donc : kon, koff et kint forment une seule constante égale à 320 ? Ou c'est IDP qui devient une constante ?)
Une fois internalisé, le plasmide thérapeutique engendre l’apoptose de la cellule en 1h, diminuant le nombre de cellule cancéreuse, Nc(t), et le volume tumoral, Vc.
Evolution en simultanée du DVS et d'une tumeur
L’équation d'évolution de notre modèle en fonction du temps est égale à :
Avec :
- Nc(t), le nombre de cellules cancéreuses dans le temps,
- V(t), le volume tumoral,
- V1 et V2, deux volumes tumoraux à respectivement des temps t1 et t2,
- Vcc, le volume d’une cellule cancéreuse,
- Nbi, le nombre de vecteurs tissulaires injectés,
- Pp, le pourcentage pulmonaire de vecteurs tissulaires par rapport à la dose injectée,
- DTB, le temps de doublement du vecteur tissulaire,
- tinj, le temps d'injection du vecteur tissulaire,
- Npl, le nombre de vecteurs cellulaires libérés par bactérie.
On peut négliger (aux vues des différences entre les échelles de temps ou d’espace) certains facteurs :
- Kdeg, la constante de dégradation du phage, car tous les phages sont internalisés en 10s.
- D, la diffusion du phage et IDP, l’internalisation cellulaire, car on considère que 100 phages rentrent dans 100 cellules différentes (pour une valeur potentielle de 31400) donc tout cela est égal à 1.
Simulation de traitement
MATLAB !