Team:PKU Beijing/Modeling/Parameters
From 2009.igem.org
(→Parameters) |
(→Parameters) |
||
(7 intermediate revisions not shown) | |||
Line 7: | Line 7: | ||
Constructing [[Team:PKU_Bejing/Modeling/ODE|ODEs]] is only the first step of simulating our design. The parameters, actually, play a significant role in the modeling process. Here are two sets of parameters(T3 RNA polymerase and P2) we used. | Constructing [[Team:PKU_Bejing/Modeling/ODE|ODEs]] is only the first step of simulating our design. The parameters, actually, play a significant role in the modeling process. Here are two sets of parameters(T3 RNA polymerase and P2) we used. | ||
- | We have done an systematic literature review to select parameters for our model. However, not every parameter can be found from existing | + | We have done an systematic literature review to select parameters for our model. However, not every parameter can be found from existing data, which means we have to guess part of the parameters from trial and error. To check whether we have guessed correctly, we do the sensitivity test. The sensitivity test works like this: We first give both salicylate(food) and arabinose(bell) to make bistable turn to CI state(have memory). After a period of time, we give the ''E. coli'' arabinose stimulus and GFP output will raise after a short while. We select the highest concentration point of GFP in the second procedure. The sensitivity of a parameter is calculated by using the following equations. The closer the sensitivity is to zero, the more reasonable the parameter is.<br> |
- | < | + | [[Image:PKU_Sensi.PNG]] |
==='''Assumptions'''=== | ==='''Assumptions'''=== | ||
Line 17: | Line 17: | ||
The average transcription speed in ''E.coli'' is 70nt/s. Assuming all the transcription in our circuit works in such speed, we can calculate the maximum transcription rate for each transcription equation by using this formula: | The average transcription speed in ''E.coli'' is 70nt/s. Assuming all the transcription in our circuit works in such speed, we can calculate the maximum transcription rate for each transcription equation by using this formula: | ||
Maximum Transcription Rate = Transcription Speed(nt/min)/Gene Length(bp)=4200/Gene Length (nM/min) | Maximum Transcription Rate = Transcription Speed(nt/min)/Gene Length(bp)=4200/Gene Length (nM/min) | ||
+ | Ref: http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi, [https://2008.igem.org/Team:NTU-Singapore/Modelling/Parameter NTU-Singapore iGEM2008 Team] | ||
*'''Translation''' | *'''Translation''' | ||
The average translation speed in ''E.coli'' is 40Aa/s. Also assuming all the translation in our circuit works in the same speed, we can calculate the theoretical transcription rate. However, in wetlab, we can use different rbs to regulate the translation process, thus, the translation rate can be written as: | The average translation speed in ''E.coli'' is 40Aa/s. Also assuming all the translation in our circuit works in the same speed, we can calculate the theoretical transcription rate. However, in wetlab, we can use different rbs to regulate the translation process, thus, the translation rate can be written as: | ||
Translation Rate = RBS * Translation Speed(Aa/min)/Protein Length(Aa) = 2400RBS/Protein Length (min^-1) | Translation Rate = RBS * Translation Speed(Aa/min)/Protein Length(Aa) = 2400RBS/Protein Length (min^-1) | ||
- | This transformation does not change the degree of freedom of our system. However, this does limit the range of parameters since the | + | This transformation does not change the degree of freedom of our system. However, this does limit the range of parameters since the strength of RBS can not be too extreme. |
+ | Ref: http://gchelpdesk.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi, [https://2008.igem.org/Team:NTU-Singapore/Modelling/Parameter NTU-Singapore iGEM2008 Team] | ||
*'''Cell Division Rate''' | *'''Cell Division Rate''' | ||
Line 27: | Line 29: | ||
*'''Degradation of mRNA''' | *'''Degradation of mRNA''' | ||
- | From | + | From Ref1(Belasco 1993) and Ref2(Genome Biology 2006, 7:R99), we have decided that all the mRNA in our system have a half life of 4.4 mins. |
==='''Modeling - T3 RNA polymerase'''=== | ==='''Modeling - T3 RNA polymerase'''=== | ||
- | We have construct two models, the difference of which is in the AND Gate 2 module. In this section, we'll demonstrate the parameters of our first model, in which T3 RNA polymerase mRNA with amber mutation and Aa-tRNA | + | We have construct two models, the difference of which is in the AND Gate 2 module. In this section, we'll demonstrate the parameters of our first model, in which T3 RNA polymerase mRNA with amber mutation and Aa-tRNA cooperate to produce T3 RNA polymerase protein. |
{|cellpadding=2 | {|cellpadding=2 | ||
Line 92: | Line 94: | ||
|K_12||dissociation constant of Sal,GFP||0.5||nM||0.00 | |K_12||dissociation constant of Sal,GFP||0.5||nM||0.00 | ||
|- | |- | ||
- | |K_12'||dissociation constant of T3RNAP,GFP||55||nM||Ref: | + | |K_12'||dissociation constant of T3RNAP,GFP||55||nM||Ref: The FEBS journal 2006,273:17 |
|- | |- | ||
|n_1||Hill co-effiency of AraC,tRNA||2|| || | |n_1||Hill co-effiency of AraC,tRNA||2|| || | ||
Line 208: | Line 210: | ||
|K_12||dissociation constant of Sal,GFP||0.5||nM||0.00 | |K_12||dissociation constant of Sal,GFP||0.5||nM||0.00 | ||
|- | |- | ||
- | |K_12'||dissociation constant of P2,GFP||35||nM|| | + | |K_12'||dissociation constant of P2,GFP||35||nM||1.29 |
|- | |- | ||
|n_1||Hill co-effiency of AraC,tRNA||2|| || | |n_1||Hill co-effiency of AraC,tRNA||2|| || | ||
Line 259: | Line 261: | ||
|} | |} | ||
- | Overall, the sensitivity of parameters from trial and error is also low. The bi-stable is also shows great stability. However, we consider the value in AND Gate 2 is too extreme. Although this fact doesn't indicate that the circuit design is wrong or we can't finish the weblab project theoretically, we decided that it's very necessary to | + | Overall, the sensitivity of parameters from trial and error is also low. The bi-stable is also shows great stability. However, we consider the value in AND Gate 2 is too extreme. Although this fact doesn't indicate that the circuit design is wrong or we can't finish the weblab project theoretically, we decided that it's very necessary to construct the circuit with T3 RNA polymerase. |
With all necessities prepared, it's time to see the [[Team:PKU_Beijing/Modeling/Result|result]]! | With all necessities prepared, it's time to see the [[Team:PKU_Beijing/Modeling/Result|result]]! | ||
{{PKU_Beijing/Foot}} | {{PKU_Beijing/Foot}} | ||
__NOTOC__ | __NOTOC__ |
Latest revision as of 21:36, 21 October 2009
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||