Team:SupBiotech-Paris/Bibliographie

From 2009.igem.org

(Difference between revisions)
Line 397: Line 397:
<span style="float: right">[[Team:SupBiotech-Paris/Bibliographie#drapeau|Haut de page]]</span>
<span style="float: right">[[Team:SupBiotech-Paris/Bibliographie#drapeau|Haut de page]]</span>
-
== titre ==
+
== Action antitumorale ==
{|
{|
|- style="background: grey; color:white; text-align: center; font-weight:bold; "
|- style="background: grey; color:white; text-align: center; font-weight:bold; "
Line 407: Line 407:
|- style="background: white; text-align: center;"
|- style="background: white; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[1]
-
|
+
|Chunlin Yang et al
-
|
+
|Adenovirus-mediated Wild-Type p53 Expression Induces Apoptosis and Suppresses Tumorigenesis of Prostatic Tumor Cells
-
|
+
|1995
|- style="background: #C0C0C0; text-align: center;"
|- style="background: #C0C0C0; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[2]
-
|
+
|Corrado Cirielli et al.
-
|
+
|Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma
-
|
+
|1999
|- style="background: white; text-align: center;"
|- style="background: white; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[3]
-
|
+
|Su-Ping Ren et al.
-
|
+
|Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro
-
|
+
|2006
|- style="background: #C0C0C0; text-align: center;"
|- style="background: #C0C0C0; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[4]
-
|
+
|Zhao-hua Qiu et al
-
|
+
|Growth suppression and immunogenicity enhancement of Hep-2 or primary laryngeal cancer cells by adenovirus-mediated co-transfer of human wild-type p53, granulocyte-macrophage colony-stimulating factor and B7-1 genes
-
|
+
|2002
|- style="background: white; text-align: center;"
|- style="background: white; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[5]
-
|
+
|Zhao-hua Qiu et al.
-
|
+
|Co-transfer of human wild-type p53 and granulocyte-macrophage colony-stimulating factor genes via recombinant adenovirus induces apoptosis and enhances immunogenicity in laryngeal cancer cells
-
|
+
|2001
|- style="background: #C0C0C0; text-align: center;"
|- style="background: #C0C0C0; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[6]
-
|
+
|Markus Reiser et al.
-
|
+
|Induction of cell proliferation arrest and apoptosis in hepatoma cells through adenoviral-mediated transfer of p53 gene
-
|
+
|2000
|- style="background: white; text-align: center;"
|- style="background: white; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[7]
-
|
+
|Louis L. Pisters et al.
-
|
+
|Evidence That Transfer of Functional p53 Protein Results in Increased Apoptosis in Prostate Cancer
-
|
+
|2004
|- style="background: #C0C0C0; text-align: center;"
|- style="background: #C0C0C0; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[8]
-
|
+
|Susan C. Modesitt et al.
-
|
+
|In Vitro and in Vivo Adenovirus-mediated p53 and p16 Tumor Suppressor Therapy in Ovarian Cancer
-
|
+
|2001
|- style="background: white; text-align: center;"
|- style="background: white; text-align: center;"
-
|height=40px|
+
|height=40px|Action antitumorale
-
|[]
+
|[9]
-
|
+
|Yong-song GUAN et al.
-
|
+
|Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up
-
|
+
|2009
|- style="background: #C0C0C0; text-align: center;"
|- style="background: #C0C0C0; text-align: center;"

Revision as of 01:38, 21 October 2009

framless


Contents

Thérapies

Chapitre Ref. Auteurs Titre Année
Thérapie actuelle [1] Lechat P. Pharmacology 2006
Thérapie actuelle [2] Bruguerolle B. Biological rhythms and medications: a source of variability often neglected in pharmacology 2008
Thérapie genique [1] Kevin J. Scanlon and al. Cancer Gene Therapy: Challenges and Opportunities 2004
Thérapie genique [2] Gouze JN and al. A comparative study of the inhibitory effects of interleukin-1 receptor antagonist following administration as a recombinant protein or by gene transfer 2003
Thérapie génique [3] Centre for Genetics Education http://www.genetics.com.au/index.asp XXXX


Haut de page

Vectorisation

Chapitre Ref. Auteurs Titre Année
Vectorisation [1] Couvreur P. L'encapsulation de médicament 2003
Vectorisation [2] Andrieux K. and al. Nanotechnology and new drug 2003
Vectorisation [3] Torchilin V.P. Recent Approaches to Intracellular Delivery of Drugs and DNA and Organelle Targeting 2006
Vectorisation [4] Davis M.E. and al. Nanoparticle therapeutics: an emerging treatment modality for cancer 2008
Vectorisation [5] Seow Y. and al. Biological Gene Delivery Vehicles: Beyond Viral Vectors 2009
Vectorisation [6] Decroly E. Vectorology 2005
Vectorisation [7] Robbins P.D. and al. Viral Vectors for Gene Therapy 1998
Vectorisation [8] Wei M.Q. and al. Bacterial targeted tumour therapy-dawn of a new era 2008
Vectorisation [9] Ryan R.M. and al. Use of bacteria in anti-cancer therapies 2005
Vectorisation [10] Mehnert Solid lipid nanoparticles: Production, characterization and applications 2001
Vectorisation [11] Lasic D.D. Liposomes in gene therapy 1996
Vectorisation [12] Lutten J. and al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery 2008
Vectorisation [13] Jiskoot W. and al. Immunological Risk of Injectable Drug Delivery Systems 2009
Vectorisation [14] Head M. and al. Mechanism and computer simulation of immune complex formation, opsonization, and clearance 1996
Vectorisation [15] Koide H. and al. Particle size-dependent triggering of accelerated blood clearance phenomenon 2008
Vectorisation [16] Ishida T. and al. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: Effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes 2005
Vectorisation [17] Wang XY and al. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes 2007
Vectorisation [18] Tosi M.F. and al. Innate immune responses to infection 2005
Vectorisation [19] Linkov I and al. Nanotoxicology and nanomedicine: making hard decisions 2008


Haut de page

Vecteur Tissulaire

Chapitre Ref. Auteurs Titre Année
Vecteur Tissulaire [1] Ronald S. and al. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies 2009
Vecteur Tissulaire [2] Clark B. Inderlied and al. The Mycobacterium avium Complex 1993
Vecteur Tissulaire [3] Nisheeth Agarwal and al. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase 2009
Vecteur Tissulaire [4] Hunter R.L. and al. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs 2007
Vecteur Tissulaire [5] Axelrod S and al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide 2008
Vecteur Tissulaire [6] Nicole N van der Wel and al. Subcellular localization of mycobacteria in tissues and detection of lipid antigens in organelles using cryo-techniques for light and electron microscopy 2005
Vecteur Tissulaire [7] Claudia Nobrega and al. The thymus as a target for mycobacterial infections 2007


Haut de page

Vecteur Cellulaire

Chapitre Ref. Auteurs Titre Année
Vecteur Cellulaire [1] Harrison Echols and al. Genetic Map of Bacteriophage Lambda 1978
Vecteur Cellulaire [2] Joseph Sambrook and al. Molecular Cloning: A Laboratory Manual (Third Edition) 2001
Vecteur Cellulaire [3] Court DL and al. A New Look at Bacteriophage lambda Genetic Networks 2007
Vecteur Cellulaire [4] Ortega ME and al. Bacteriophage Lambda gpNu1 and Escherichia coli IHF Proteins Cooperatively Bind and Bend Viral DNA: Implications for the Assembly of a Genome-Packaging Motor 2006
Vecteur Cellulaire [5] Feiss M. and al. Bactériophage Lambda Terminase and the Mechanism of Viral DNA Packaging 2005
Vecteur Cellulaire [6] Hang JQ and al. The Functional Asymmetry of cosN, the Nicking Site for Bacteriophage λ DNA Packaging, Is Dependent on the Terminase Binding Site, cosB 2001
Vecteur Cellulaire [7] Becker A and al. Bacteriophage lambda DNA : The begginning of the End 1990
Vecteur Cellulaire [8] Hochschild A and al. The bactériophage lambda cI protein finds an asymmetric solution 2009
Vecteur Cellulaire [9] Phoebe L.Stewart1 and al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization 1997


Haut de page

Plasmide Thérapeutique

Chapitre Ref. Auteurs Titre Année
Plasmide thérapeutique [1] Ortega ME et al. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor 2006
Plasmide thérapeutique [2] Joseph Sambrook and al. Molecular Cloning: A Laboratory Manual (Third Edition) 2001
Plasmide thérapeutique [3] Court DL and al. A New Look at Bacteriophage lambda Genetic Networks 2007
Plasmide thérapeutique [4] Feiss M. and al. Viral Genome Packaging Machines: Genetics, Structure and Mechanism 2005
Plasmide thérapeutique [5] Hang JQ and al. The Functional Asymmetry of cosN, the Nicking Site for Bacteriophage λ DNA Packaging, Is Dependent on the Terminase Binding Site, cosB 2001
Plasmide thérapeutique [6] Becker A and al. Bacteriophage lambda DNA : The begginning of the End 1990
Plasmide thérapeutique [7] Young et al. Effect of a DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature 2003


Haut de page

Action antitumorale

Chapitre Ref. Auteurs Titre Année
Action antitumorale [1] Chunlin Yang et al Adenovirus-mediated Wild-Type p53 Expression Induces Apoptosis and Suppresses Tumorigenesis of Prostatic Tumor Cells 1995
Action antitumorale [2] Corrado Cirielli et al. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma 1999
Action antitumorale [3] Su-Ping Ren et al. Adenoviral-mediated transfer of human wild-type p53, GM-CSF and B7-1 genes results in growth suppression and autologous anti-tumor cytotoxicity of multiple myeloma cells in vitro 2006
Action antitumorale [4] Zhao-hua Qiu et al Growth suppression and immunogenicity enhancement of Hep-2 or primary laryngeal cancer cells by adenovirus-mediated co-transfer of human wild-type p53, granulocyte-macrophage colony-stimulating factor and B7-1 genes 2002
Action antitumorale [5] Zhao-hua Qiu et al. Co-transfer of human wild-type p53 and granulocyte-macrophage colony-stimulating factor genes via recombinant adenovirus induces apoptosis and enhances immunogenicity in laryngeal cancer cells 2001
Action antitumorale [6] Markus Reiser et al. Induction of cell proliferation arrest and apoptosis in hepatoma cells through adenoviral-mediated transfer of p53 gene 2000
Action antitumorale [7] Louis L. Pisters et al. Evidence That Transfer of Functional p53 Protein Results in Increased Apoptosis in Prostate Cancer 2004
Action antitumorale [8] Susan C. Modesitt et al. In Vitro and in Vivo Adenovirus-mediated p53 and p16 Tumor Suppressor Therapy in Ovarian Cancer 2001
Action antitumorale [9] Yong-song GUAN et al. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up 2009
[]
[]
[]
[]
[]
[]


Haut de page